Wonjung Park , Maria del C. Valdés Hernández , Jaeil Kim , Susana Muñoz Maniega , Fraser N. Sneden , Karen J. Ferguson , Mark E. Bastin , Joanna M. Wardlaw , Simon R. Cox , Jinah Park
{"title":"AI-based deformable hippocampal mesh reflects hippocampal morphological characteristics in relation to cognition in healthy older adults","authors":"Wonjung Park , Maria del C. Valdés Hernández , Jaeil Kim , Susana Muñoz Maniega , Fraser N. Sneden , Karen J. Ferguson , Mark E. Bastin , Joanna M. Wardlaw , Simon R. Cox , Jinah Park","doi":"10.1016/j.neuroimage.2025.121145","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic resonance imaging (MRI)-derived hippocampus measurements have been associated with different cognitive domains. The knowledge of hippocampal structural deformations as we age has contributed to our understanding of the overall aging process. Different morphological hippocampal shape analysis methods have been developed, but it is unclear how their principles relate and how consistent are the published results in relation to cognition in the normal elderly in the light of the new deep-learning-based (DL) state-of-the-art modeling methods. We compared results from analyzing the hippocampal morphology using manually-generated binary masks and a Laplacian- based deformation shape analysis method, with those resulting from analyzing SynthSeg-generated hippocampal binary masks using a DL method based on the PointNet architecture, in relation to different cognitive domains. Whilst most previously reported statistically significant associations were also replicated, differences were also observed due to 1) differences in the binary masks and 2) differences in sensitivity between the methods. Differences in the template mesh, number of vertices of the template mesh, and their distribution did not impact the results.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"310 ","pages":"Article 121145"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001478","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic resonance imaging (MRI)-derived hippocampus measurements have been associated with different cognitive domains. The knowledge of hippocampal structural deformations as we age has contributed to our understanding of the overall aging process. Different morphological hippocampal shape analysis methods have been developed, but it is unclear how their principles relate and how consistent are the published results in relation to cognition in the normal elderly in the light of the new deep-learning-based (DL) state-of-the-art modeling methods. We compared results from analyzing the hippocampal morphology using manually-generated binary masks and a Laplacian- based deformation shape analysis method, with those resulting from analyzing SynthSeg-generated hippocampal binary masks using a DL method based on the PointNet architecture, in relation to different cognitive domains. Whilst most previously reported statistically significant associations were also replicated, differences were also observed due to 1) differences in the binary masks and 2) differences in sensitivity between the methods. Differences in the template mesh, number of vertices of the template mesh, and their distribution did not impact the results.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.