Secondary-Structure-Informed RNA Inverse Design via Relational Graph Neural Networks.

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Amirhossein Manzourolajdad, Mohammad Mohebbi
{"title":"Secondary-Structure-Informed RNA Inverse Design via Relational Graph Neural Networks.","authors":"Amirhossein Manzourolajdad, Mohammad Mohebbi","doi":"10.3390/ncrna11020018","DOIUrl":null,"url":null,"abstract":"<p><p>RNA inverse design is an essential part of many RNA therapeutic strategies. To date, there have been great advances in computationally driven RNA design. The current machine learning approaches can predict the sequence of an RNA given its 3D structure with acceptable accuracy and at tremendous speed. The design and engineering of RNA regulators such as riboswitches, however, is often more difficult, partly due to their inherent conformational switching abilities. Although recent state-of-the-art models do incorporate information about the multiple structures that a sequence can fold into, there is great room for improvement in modeling structural switching. In this work, a relational geometric graph neural network is proposed that explicitly incorporates alternative structures to predict an RNA sequence. Converting the RNA structure into a geometric graph, the proposed model uses edge types to distinguish between the primary structure, secondary structure, and spatial positioning of the nucleotides in representing structures. The results show higher native sequence recovery rates over those of gRNAde across different test sets (eg. 72% vs. 66%) and a benchmark from the literature (60% vs. 57%). Secondary-structure edge types had a more significant impact on the sequence recovery than the spatial edge types as defined in this work. Overall, these results suggest the need for more complex and case-specific characterization of RNA for successful inverse design.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA inverse design is an essential part of many RNA therapeutic strategies. To date, there have been great advances in computationally driven RNA design. The current machine learning approaches can predict the sequence of an RNA given its 3D structure with acceptable accuracy and at tremendous speed. The design and engineering of RNA regulators such as riboswitches, however, is often more difficult, partly due to their inherent conformational switching abilities. Although recent state-of-the-art models do incorporate information about the multiple structures that a sequence can fold into, there is great room for improvement in modeling structural switching. In this work, a relational geometric graph neural network is proposed that explicitly incorporates alternative structures to predict an RNA sequence. Converting the RNA structure into a geometric graph, the proposed model uses edge types to distinguish between the primary structure, secondary structure, and spatial positioning of the nucleotides in representing structures. The results show higher native sequence recovery rates over those of gRNAde across different test sets (eg. 72% vs. 66%) and a benchmark from the literature (60% vs. 57%). Secondary-structure edge types had a more significant impact on the sequence recovery than the spatial edge types as defined in this work. Overall, these results suggest the need for more complex and case-specific characterization of RNA for successful inverse design.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信