{"title":"Measurement of Wheel Skidding on Racing Wheelchairs.","authors":"Nolwenn Poquerusse, Arnaud Hays, Aurélie Cortial, Opale Vigié, Ilona Alberca, Mathieu Deves, Lorian Honnorat, Safiya Noury, Bruno Watier, Arnaud Faupin","doi":"10.3390/mps8020028","DOIUrl":null,"url":null,"abstract":"<p><p>In the context of wheelchair racing, research primarily focuses on studying wheelchair ergonomics and determining kinematic, kinetic, and rolling resistance variables. One factor identified as influencing athletes' performance is wheel skidding on the ground, a parameter complementary to rolling resistance. The objective of this study, therefore, is to identify, within a laboratory setting, the parameters that influence the risk of skidding in racing wheelchairs by measuring skidding torque. The ultimate goal is to enhance athletes' performance by optimizing the interaction between the athlete and their wheelchair, and the wheelchair and the environment. In this perspective, four parameters were examined: the type of tubular, the camber angle, the tire pressure, and the load applied to the wheel using a skidometer. This tool characterizes a tire's grip on a surface by measuring torques. The aim is to develop a system for classifying tire grip on dry athletics track at ambient temperature. The findings revealed that only the effects of load and tubular type had a significant impact on the torque values obtained. The tire that minimized the risk of skidding, among all tested combinations, is the Vittoria Pista Speed 23-28″. Furthermore, as the mass applied to the wheel increases, so do the resulting torques. This implies that a heavier athlete would require a greater force to be applied to the hand rim for the tire to skid. However, it was also demonstrated that the risk of skidding in a racing wheelchair is unlikely, as the torques obtained were over a range of 90 to 190 Nm. These values far exceed those typically exerted by para-athletes, which are a maximum of 60 Nm. The long-term goal would be to adjust the mode of torque application on the wheel using the skidometer for a more realistic field approach.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"8 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps8020028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of wheelchair racing, research primarily focuses on studying wheelchair ergonomics and determining kinematic, kinetic, and rolling resistance variables. One factor identified as influencing athletes' performance is wheel skidding on the ground, a parameter complementary to rolling resistance. The objective of this study, therefore, is to identify, within a laboratory setting, the parameters that influence the risk of skidding in racing wheelchairs by measuring skidding torque. The ultimate goal is to enhance athletes' performance by optimizing the interaction between the athlete and their wheelchair, and the wheelchair and the environment. In this perspective, four parameters were examined: the type of tubular, the camber angle, the tire pressure, and the load applied to the wheel using a skidometer. This tool characterizes a tire's grip on a surface by measuring torques. The aim is to develop a system for classifying tire grip on dry athletics track at ambient temperature. The findings revealed that only the effects of load and tubular type had a significant impact on the torque values obtained. The tire that minimized the risk of skidding, among all tested combinations, is the Vittoria Pista Speed 23-28″. Furthermore, as the mass applied to the wheel increases, so do the resulting torques. This implies that a heavier athlete would require a greater force to be applied to the hand rim for the tire to skid. However, it was also demonstrated that the risk of skidding in a racing wheelchair is unlikely, as the torques obtained were over a range of 90 to 190 Nm. These values far exceed those typically exerted by para-athletes, which are a maximum of 60 Nm. The long-term goal would be to adjust the mode of torque application on the wheel using the skidometer for a more realistic field approach.