{"title":"Engineering Komagataella phaffii to produce lycopene sustainably from glucose or methanol","authors":"Wei Zhou, Rui-Jing Ling, Yi-Chen Yang, Shu-Ting Hou, Feng-Qing Wang, Bei Gao, Dong-Zhi Wei","doi":"10.1016/j.ymben.2025.03.013","DOIUrl":null,"url":null,"abstract":"<div><div>Lycopene, a potent carotenoid with high antioxidant capacity and extensive applications, holds significant potential for sustainable production via microbial engineering, particularly with the rising interest in methanol as an ideal non-grain feedstock for a carbon-negative economy. In this study, <em>Komagataella phaffii</em> was systematically engineered to enhance lycopene production using glucose and renewable methanol as alternative carbon sources. Firstly, we demonstrated that the cytoplasmic FPP could penetrate into the peroxisome, and thus achieved the dual-localized lycopene synthesis. Subsequently, the cytoplasmic FPP pool was expanded by dynamically regulating squalene synthase and enhancing the mevalonate pathway, and FPP was redirected to lycopene synthesis via assembling critical enzymes. Furthermore, the synthesis of lycopene from methanol was improved by reprogramming the methanol metabolic pathway. In the above process, we found that the engineered strains would degrade significantly in the process of passing culture. Comparative transcriptomic analysis revealed that nitrogen metabolism genes contributed significantly to strain degeneration, and a gene (PAS_chr2-2_0003) that positively influenced lycopene synthesis was identified. Finally, two strains were successfully engineered: strain zw327, which produced 8.4 g/L lycopene from glucose, and strain zw352, which achieved 10.2 g/L from methanol and glycerol. The latter represents the highest reported titer from methanol to date, underscoring the potential of <em>K. phaffii</em> as a robust one-carbon platform for industrial terpenoid biosynthesis.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"90 ","pages":"Pages 141-153"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717625000497","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lycopene, a potent carotenoid with high antioxidant capacity and extensive applications, holds significant potential for sustainable production via microbial engineering, particularly with the rising interest in methanol as an ideal non-grain feedstock for a carbon-negative economy. In this study, Komagataella phaffii was systematically engineered to enhance lycopene production using glucose and renewable methanol as alternative carbon sources. Firstly, we demonstrated that the cytoplasmic FPP could penetrate into the peroxisome, and thus achieved the dual-localized lycopene synthesis. Subsequently, the cytoplasmic FPP pool was expanded by dynamically regulating squalene synthase and enhancing the mevalonate pathway, and FPP was redirected to lycopene synthesis via assembling critical enzymes. Furthermore, the synthesis of lycopene from methanol was improved by reprogramming the methanol metabolic pathway. In the above process, we found that the engineered strains would degrade significantly in the process of passing culture. Comparative transcriptomic analysis revealed that nitrogen metabolism genes contributed significantly to strain degeneration, and a gene (PAS_chr2-2_0003) that positively influenced lycopene synthesis was identified. Finally, two strains were successfully engineered: strain zw327, which produced 8.4 g/L lycopene from glucose, and strain zw352, which achieved 10.2 g/L from methanol and glycerol. The latter represents the highest reported titer from methanol to date, underscoring the potential of K. phaffii as a robust one-carbon platform for industrial terpenoid biosynthesis.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.