Osmoregulatory contributions of the corticotropin-releasing factor system in the intestine of Atlantic salmon.

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-07-15 Epub Date: 2025-05-15 DOI:10.1242/jeb.250052
Brett M Culbert, Stephen D McCormick, Nicholas J Bernier
{"title":"Osmoregulatory contributions of the corticotropin-releasing factor system in the intestine of Atlantic salmon.","authors":"Brett M Culbert, Stephen D McCormick, Nicholas J Bernier","doi":"10.1242/jeb.250052","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of euryhaline fishes to tolerate different environmental salinities depends upon the flexibility of their osmoregulatory organs, including the intestine. Several endocrine pathways contribute to the coordination of osmoregulatory processes in the teleost intestine; however, while the corticotropin-releasing factor (CRF) system has established osmoregulatory actions in the mammalian intestine, it is unclear whether the intestinal CRF system serves similar functions in teleosts. Therefore, we sought to determine whether the CRF system contributes to osmoregulatory processes in the intestine of Atlantic salmon (Salmo salar). We first showed using in vitro sac preparations that activation of CRF receptor type 2 (CRFR2) in the middle and posterior regions of the intestine reduces water, Na+ and Cl- absorption. However, co-activation of CRFR1 and CRFR2 inhibited water and Na+ absorption without affecting net Cl- absorption. We then assessed how the CRF system in the middle and posterior regions of the intestine was transcriptionally regulated during the seasonal acquisition of seawater tolerance (i.e. smoltification) and following changes in environmental salinity. Compared with parr, smolts had higher transcript levels of CRF ligands and this difference persisted following seawater transfer. Additionally, seawater transfer caused transient increases in transcription of urocortin 2 (ucn2) and crfr2 (posterior intestine only). Similar increases in ucn2 and crfr2 mRNA were observed following seawater to freshwater transfer of post-smolts. Our results indicate that the intestinal CRF system of Atlantic salmon contributes to osmoregulation during the initial days following changes in environmental salinity and that osmoregulatory actions of the intestinal CRF system are conserved across vertebrates.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091946/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.250052","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of euryhaline fishes to tolerate different environmental salinities depends upon the flexibility of their osmoregulatory organs, including the intestine. Several endocrine pathways contribute to the coordination of osmoregulatory processes in the teleost intestine; however, while the corticotropin-releasing factor (CRF) system has established osmoregulatory actions in the mammalian intestine, it is unclear whether the intestinal CRF system serves similar functions in teleosts. Therefore, we sought to determine whether the CRF system contributes to osmoregulatory processes in the intestine of Atlantic salmon (Salmo salar). We first showed using in vitro sac preparations that activation of CRF receptor type 2 (CRFR2) in the middle and posterior regions of the intestine reduces water, Na+ and Cl- absorption. However, co-activation of CRFR1 and CRFR2 inhibited water and Na+ absorption without affecting net Cl- absorption. We then assessed how the CRF system in the middle and posterior regions of the intestine was transcriptionally regulated during the seasonal acquisition of seawater tolerance (i.e. smoltification) and following changes in environmental salinity. Compared with parr, smolts had higher transcript levels of CRF ligands and this difference persisted following seawater transfer. Additionally, seawater transfer caused transient increases in transcription of urocortin 2 (ucn2) and crfr2 (posterior intestine only). Similar increases in ucn2 and crfr2 mRNA were observed following seawater to freshwater transfer of post-smolts. Our results indicate that the intestinal CRF system of Atlantic salmon contributes to osmoregulation during the initial days following changes in environmental salinity and that osmoregulatory actions of the intestinal CRF system are conserved across vertebrates.

促肾上腺皮质激素释放因子系统在大西洋鲑鱼肠道中的渗透调节作用。
泛盐鱼类耐受不同环境盐度的能力取决于其渗透调节器官的灵活性,包括肠道。硬骨鱼肠中几种内分泌通路有助于渗透调节过程的协调;然而,虽然促肾上腺皮质激素释放因子(CRF)系统在哺乳动物肠道中建立了渗透调节作用,但肠道CRF系统是否在硬骨鱼中具有类似的功能尚不清楚。因此,我们试图确定CRF系统是否有助于大西洋鲑鱼(Salmo salar)肠道的渗透调节过程。我们首先使用体外囊制剂证明,激活肠道中部和后部的CRF受体2型(CRFR2)可减少水、Na+和Cl-的吸收。然而,CRFR1和CRFR2的共激活抑制了水和Na+的吸收,但不影响净Cl-吸收。然后,我们评估了肠道中部和后部区域的CRF系统在海水耐受性的季节性获得(即smoltification)和环境盐度变化期间是如何转录调节的。幼鱼的CRF配体转录水平高于幼鱼,这种差异在海水转移后持续存在。此外,海水转移引起尿皮质素2 (UCN2)和CRFR2转录的短暂增加(仅后肠)。幼崽从海水转移到淡水后,UCN2和CRFR2也出现了类似的增加。我们的研究结果表明,大西洋鲑鱼的肠道CRF系统在环境盐度变化后的最初几天有助于渗透调节,并且肠道CRF系统的渗透调节作用在脊椎动物中是保守的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信