{"title":"Dissecting Causal Relationships Between Immune Cells, Plasma Metabolites, and PCOS: Evidence From Mediating Mendelian Randomization Analysis.","authors":"Xia-Li Wang, Yi-Fang He, Shi-Kun Chen, Jing Cheng, Xiu-Ming Wu","doi":"10.2147/IJWH.S508352","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The relationship between Polycystic ovary syndrome (PCOS) and immune dysregulation, along with metabolic disturbances, remains unclear. This study used Mendelian Randomization (MR) to investigate causal relationships between immune cells, PCOS, and possible metabolite mediators.</p><p><strong>Methods: </strong>We explored the genetic-level relationship between immune cells and PCOS, focusing on metabolites as potential mediators. Data from genome-wide association studies (GWAS) included 731 immune cell types (n=3757), 1400 plasma metabolites (n=8299), and PCOS cases (n=797) versus controls (n=140,558). Bidirectional MR analysis examined immune-PCOS relationships, while two-step MR and mediation analysis identified metabolites as potential mediators. The inverse variance-weighted (IVW) method was used for primary causal assessment, with sensitivity analysis validating results.</p><p><strong>Results: </strong>We identified a total of 33 immune cells that were associated with increased or decreased risk of PCOS (<i>P</i> < 0.05), and these immune cells were also associated with alterations in certain metabolite levels (<i>P</i> < 0.05). Among them, 12 immune cells were found to influence the occurrence of PCOS through the mediation of 17 metabolites. Notably, the effects of Myeloid DC %DC, NKT AC, CD20 on CD20- CD38-, CD25 on memory B cell, and HLA DR on CD33dim HLA DR+ CD11b+ were mediated by multiple metabolites on PCOS development. Similarly, histidine betaine (hercynine) levels and alpha-ketoglutarate to ornithine ratio mediated the association of more than one immune cell with PCOS.</p><p><strong>Conclusion: </strong>This study highlights 12 immune cells impacting PCOS through 17 metabolites, advancing the understanding of immune mechanisms in PCOS risk and suggesting potential therapeutic approaches targeting immune modulation.</p>","PeriodicalId":14356,"journal":{"name":"International Journal of Women's Health","volume":"17 ","pages":"807-823"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928329/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Women's Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJWH.S508352","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The relationship between Polycystic ovary syndrome (PCOS) and immune dysregulation, along with metabolic disturbances, remains unclear. This study used Mendelian Randomization (MR) to investigate causal relationships between immune cells, PCOS, and possible metabolite mediators.
Methods: We explored the genetic-level relationship between immune cells and PCOS, focusing on metabolites as potential mediators. Data from genome-wide association studies (GWAS) included 731 immune cell types (n=3757), 1400 plasma metabolites (n=8299), and PCOS cases (n=797) versus controls (n=140,558). Bidirectional MR analysis examined immune-PCOS relationships, while two-step MR and mediation analysis identified metabolites as potential mediators. The inverse variance-weighted (IVW) method was used for primary causal assessment, with sensitivity analysis validating results.
Results: We identified a total of 33 immune cells that were associated with increased or decreased risk of PCOS (P < 0.05), and these immune cells were also associated with alterations in certain metabolite levels (P < 0.05). Among them, 12 immune cells were found to influence the occurrence of PCOS through the mediation of 17 metabolites. Notably, the effects of Myeloid DC %DC, NKT AC, CD20 on CD20- CD38-, CD25 on memory B cell, and HLA DR on CD33dim HLA DR+ CD11b+ were mediated by multiple metabolites on PCOS development. Similarly, histidine betaine (hercynine) levels and alpha-ketoglutarate to ornithine ratio mediated the association of more than one immune cell with PCOS.
Conclusion: This study highlights 12 immune cells impacting PCOS through 17 metabolites, advancing the understanding of immune mechanisms in PCOS risk and suggesting potential therapeutic approaches targeting immune modulation.
期刊介绍:
International Journal of Women''s Health is an international, peer-reviewed, open access, online journal. Publishing original research, reports, editorials, reviews and commentaries on all aspects of women''s healthcare including gynecology, obstetrics, and breast cancer. Subject areas include: Chronic conditions including cancers of various organs specific and not specific to women Migraine, headaches, arthritis, osteoporosis Endocrine and autoimmune syndromes - asthma, multiple sclerosis, lupus, diabetes Sexual and reproductive health including fertility patterns and emerging technologies to address infertility Infectious disease with chronic sequelae including HIV/AIDS, HPV, PID, and other STDs Psychological and psychosocial conditions - depression across the life span, substance abuse, domestic violence Health maintenance among aging females - factors affecting the quality of life including physical, social and mental issues Avenues for health promotion and disease prevention across the life span Male vs female incidence comparisons for conditions that affect both genders.