{"title":"Single-cell omics and heterogeneity of neuroglial cells.","authors":"Sylvie C Lahaie, Naama Brezner, Keith K Murai","doi":"10.1016/B978-0-443-19104-6.00013-9","DOIUrl":null,"url":null,"abstract":"<p><p>Our bodies contain a rich diversity of cell types with unique physiologic properties. Interestingly, cells within our bodies contain the same DNA content, yet they can vary dramatically with respect to their molecular, structural, and functional properties. The need to better understand cellular complexity and diversity in biologic systems has led to a technical revolution in the field through the development of sophisticated single-cell \"omic\" approaches. This allows the investigation of the genome, epigenome, transcriptome, and proteome of individual cells derived from complex samples or tissues, such as nervous system tissue. These methods are allowing scientists to detect distinct cell populations and cellular states in different species (including rodent and human) and molecular transitions of cell populations across the lifespan. Recent studies have revealed that astrocytes, oligodendrocytes, and microglia exhibit greater molecular and functional heterogeneity than originally thought and innovative single-cell technologies have allowed a more comprehensive and less biased view of this cellular diversity. The chapter begins by providing a primer of single-cell transcriptomic and spatial transcriptomic approaches that have been particularly influential in uncovering single-cell diversity of neuroglial cells in the brain. It then takes a closer look at how these technologies have been pivotal in defining neuroglial cell subtypes and for determining their spatial relationships within the CNS. Then, it concludes with discussion of how the recent technical advances and discoveries have provoked new questions about the origin, organization, and functional purpose of diverse neuroglial cell subtypes.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"209 ","pages":"265-275"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of clinical neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-443-19104-6.00013-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Our bodies contain a rich diversity of cell types with unique physiologic properties. Interestingly, cells within our bodies contain the same DNA content, yet they can vary dramatically with respect to their molecular, structural, and functional properties. The need to better understand cellular complexity and diversity in biologic systems has led to a technical revolution in the field through the development of sophisticated single-cell "omic" approaches. This allows the investigation of the genome, epigenome, transcriptome, and proteome of individual cells derived from complex samples or tissues, such as nervous system tissue. These methods are allowing scientists to detect distinct cell populations and cellular states in different species (including rodent and human) and molecular transitions of cell populations across the lifespan. Recent studies have revealed that astrocytes, oligodendrocytes, and microglia exhibit greater molecular and functional heterogeneity than originally thought and innovative single-cell technologies have allowed a more comprehensive and less biased view of this cellular diversity. The chapter begins by providing a primer of single-cell transcriptomic and spatial transcriptomic approaches that have been particularly influential in uncovering single-cell diversity of neuroglial cells in the brain. It then takes a closer look at how these technologies have been pivotal in defining neuroglial cell subtypes and for determining their spatial relationships within the CNS. Then, it concludes with discussion of how the recent technical advances and discoveries have provoked new questions about the origin, organization, and functional purpose of diverse neuroglial cell subtypes.
期刊介绍:
The Handbook of Clinical Neurology (HCN) was originally conceived and edited by Pierre Vinken and George Bruyn as a prestigious, multivolume reference work that would cover all the disorders encountered by clinicians and researchers engaged in neurology and allied fields. The first series of the Handbook (Volumes 1-44) was published between 1968 and 1982 and was followed by a second series (Volumes 45-78), guided by the same editors, which concluded in 2002. By that time, the Handbook had come to represent one of the largest scientific works ever published. In 2002, Professors Michael J. Aminoff, François Boller, and Dick F. Swaab took on the responsibility of supervising the third (current) series, the first volumes of which published in 2003. They have designed this series to encompass both clinical neurology and also the basic and clinical neurosciences that are its underpinning. Given the enormity and complexity of the accumulating literature, it is almost impossible to keep abreast of developments in the field, thus providing the raison d''être for the series. The series will thus appeal to clinicians and investigators alike, providing to each an added dimension. Now, more than 140 volumes after it began, the Handbook of Clinical Neurology series has an unparalleled reputation for providing the latest information on fundamental research on the operation of the nervous system in health and disease, comprehensive clinical information on neurological and related disorders, and up-to-date treatment protocols.