{"title":"Innovative approaches to treatment of eye diseases: advances in stem cell therapy use in ophthalmology.","authors":"Victor Oluwatomiwa Ajekiigbe, Chinonyelum Emmanuel Agbo, Ikponmwosa Jude Ogieuhi, Chidera Stanley Anthony, Olajumoke Adesola Adewole, Bisharat Ahmed, Adewunmi Akingbola, Chinemelum Kingsley Nwankwo, Ayomide Timilehin Kayode, Uzochukwu Emmanuel Chima, Obed Mercy Adaobi","doi":"10.1007/s10792-025-03493-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The human eye, a photo-sensory organ with an array of neuronal and tissue networks, remains susceptible to damage from various diseases and disorders despite its being a flawless masterpiece. It is estimated that over 2 billion people suffer from vision loss with common causative factors such as; age-related macular degeneration (AMD), glaucoma, cataracts, diabetic retinopathy, and infections amongst others. The use of Orthodox procedures has only helped mitigate the pathology; however, it doesn't serve any substantial curative purpose. More recently, the incorporation of new therapies via ocular delivery of nanomaterials and stem cell intervention has helped to change tides in the treatment of various ophthalmic pathologies.</p><p><strong>Main text: </strong>This review provides an overview of the current trends and breakthroughs in ophthalmology via stem cell therapy, with emphasis on its types, mechanisms, applications, and benefits. Mesenchymal stem cells which can arise from embryonic or adult origin possess some immunomodulatory effects that contribute to the therapeutic relevance of the MSCs and the ability to evade rejection from the host. However, the major drawback has been uncontrolled growth which can result in unintended side effects. Moreso, religious and ethical issues concerning the employment of MSCs from embryonic origin have also hindered clinical progression with its use. The use of stem cell therapy in the treatment of eye pathologies which is still undergoing clinical trials has shown to be a more viable treatment approach in ophthalmology as it targets retinal degenerative diseases thereby offering novel pathways for vision restoration. And also serves as a revolutionary alternative for treating severe ocular diseases. Stem cell delivery techniques might be quite cumbersome as the eye is a very delicate organ. The therapeutic interventional technique employed is aimed to ensure the reduction or absence of undesired effects in the deposition of the active pharmaceutical ingredient (API) being the stem cells. Techniques such as hydrogel-based injectables, which offer delivery of the APIs to the desired site of action without change in the physicochemical properties of the drug molecule, the scaffold delivery techniques, and the use of 3D bio-printing which can be used to develop scaffolds for retinal degeneration. The employment of artificial intelligence and machine learning in stem cell therapy has shown to be very fast and efficient in stem cell delivery and preventing likely human errors.</p><p><strong>Conclusions: </strong>Unlike conventional treatments that often focus on managing symptoms, stem cells have the unique ability to repair and regenerate damaged tissues, addressing the root causes of the diseases. However, limitations due to economic, regulatory, and ethical challenges have posed barriers to advancing stem cell therapies.</p>","PeriodicalId":14473,"journal":{"name":"International Ophthalmology","volume":"45 1","pages":"113"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10792-025-03493-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The human eye, a photo-sensory organ with an array of neuronal and tissue networks, remains susceptible to damage from various diseases and disorders despite its being a flawless masterpiece. It is estimated that over 2 billion people suffer from vision loss with common causative factors such as; age-related macular degeneration (AMD), glaucoma, cataracts, diabetic retinopathy, and infections amongst others. The use of Orthodox procedures has only helped mitigate the pathology; however, it doesn't serve any substantial curative purpose. More recently, the incorporation of new therapies via ocular delivery of nanomaterials and stem cell intervention has helped to change tides in the treatment of various ophthalmic pathologies.
Main text: This review provides an overview of the current trends and breakthroughs in ophthalmology via stem cell therapy, with emphasis on its types, mechanisms, applications, and benefits. Mesenchymal stem cells which can arise from embryonic or adult origin possess some immunomodulatory effects that contribute to the therapeutic relevance of the MSCs and the ability to evade rejection from the host. However, the major drawback has been uncontrolled growth which can result in unintended side effects. Moreso, religious and ethical issues concerning the employment of MSCs from embryonic origin have also hindered clinical progression with its use. The use of stem cell therapy in the treatment of eye pathologies which is still undergoing clinical trials has shown to be a more viable treatment approach in ophthalmology as it targets retinal degenerative diseases thereby offering novel pathways for vision restoration. And also serves as a revolutionary alternative for treating severe ocular diseases. Stem cell delivery techniques might be quite cumbersome as the eye is a very delicate organ. The therapeutic interventional technique employed is aimed to ensure the reduction or absence of undesired effects in the deposition of the active pharmaceutical ingredient (API) being the stem cells. Techniques such as hydrogel-based injectables, which offer delivery of the APIs to the desired site of action without change in the physicochemical properties of the drug molecule, the scaffold delivery techniques, and the use of 3D bio-printing which can be used to develop scaffolds for retinal degeneration. The employment of artificial intelligence and machine learning in stem cell therapy has shown to be very fast and efficient in stem cell delivery and preventing likely human errors.
Conclusions: Unlike conventional treatments that often focus on managing symptoms, stem cells have the unique ability to repair and regenerate damaged tissues, addressing the root causes of the diseases. However, limitations due to economic, regulatory, and ethical challenges have posed barriers to advancing stem cell therapies.
期刊介绍:
International Ophthalmology provides the clinician with articles on all the relevant subspecialties of ophthalmology, with a broad international scope. The emphasis is on presentation of the latest clinical research in the field. In addition, the journal includes regular sections devoted to new developments in technologies, products, and techniques.