Physiology of neuroglia of the central nervous system.

Q2 Medicine
Alexei Verkhratsky, Alexey Semyanov
{"title":"Physiology of neuroglia of the central nervous system.","authors":"Alexei Verkhratsky, Alexey Semyanov","doi":"10.1016/B978-0-443-19104-6.00005-X","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroglia of the central nervous system (CNS) are a diverse and highly heterogeneous population of cells of ectodermal, neuroepithelial origin (macroglia, that includes astroglia and oligodendroglia) and mesodermal, myeloid origin (microglia). Neuroglia are primary homeostatic cells of the CNS, responsible for the support, defense, and protection of the nervous tissue. The extended class of astroglia (which includes numerous parenchymal astrocytes, such as protoplasmic, fibrous, velate, marginal, etc., radial astrocytes such as Bergmann glia, Muller glia, etc., and ependymoglia lining the walls of brain ventricles and central canal of the spinal cord) is primarily responsible for overall homeostasis of the nervous tissue. Astroglial cells control homeostasis of ions, neurotransmitters, hormones, metabolites, and are responsible for neuroprotection and defense of the CNS. Oligodendroglia provide for myelination of axons, hence supporting and sustaining CNS connectome. Microglia are tissue macrophages adapted to the CNS environment which contribute to the host of physiologic functions including regulation of synaptic connectivity through synaptic pruning, regulation of neurogenesis, and even modifying neuronal excitability. Neuroglial cells express numerous receptors, transporters, and channels that allow neuroglia to perceive and follow neuronal activity. Activation of these receptors triggers intracellular ionic signals that govern various homeostatic cascades underlying glial supportive and defensive capabilities. Ionic signaling therefore represents the substrate of glial excitability.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"209 ","pages":"69-91"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of clinical neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-443-19104-6.00005-X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Neuroglia of the central nervous system (CNS) are a diverse and highly heterogeneous population of cells of ectodermal, neuroepithelial origin (macroglia, that includes astroglia and oligodendroglia) and mesodermal, myeloid origin (microglia). Neuroglia are primary homeostatic cells of the CNS, responsible for the support, defense, and protection of the nervous tissue. The extended class of astroglia (which includes numerous parenchymal astrocytes, such as protoplasmic, fibrous, velate, marginal, etc., radial astrocytes such as Bergmann glia, Muller glia, etc., and ependymoglia lining the walls of brain ventricles and central canal of the spinal cord) is primarily responsible for overall homeostasis of the nervous tissue. Astroglial cells control homeostasis of ions, neurotransmitters, hormones, metabolites, and are responsible for neuroprotection and defense of the CNS. Oligodendroglia provide for myelination of axons, hence supporting and sustaining CNS connectome. Microglia are tissue macrophages adapted to the CNS environment which contribute to the host of physiologic functions including regulation of synaptic connectivity through synaptic pruning, regulation of neurogenesis, and even modifying neuronal excitability. Neuroglial cells express numerous receptors, transporters, and channels that allow neuroglia to perceive and follow neuronal activity. Activation of these receptors triggers intracellular ionic signals that govern various homeostatic cascades underlying glial supportive and defensive capabilities. Ionic signaling therefore represents the substrate of glial excitability.

中枢神经系统神经胶质的生理学。
中枢神经系统(CNS)的神经胶质细胞是由外胚层的神经上皮细胞(大胶质细胞,包括星形胶质细胞和少突胶质细胞)和中胚层的髓系细胞(小胶质细胞)组成的多样化和高度异质性的细胞群。神经胶质细胞是中枢神经系统的主要稳态细胞,负责支持、防御和保护神经组织。扩展的星形胶质细胞类别(包括许多实质星形胶质细胞,如原生质、纤维状、velate、边缘状等,放射状星形胶质细胞,如Bergmann胶质细胞、Muller胶质细胞等,以及内衬脑室壁和脊髓中央管的室管膜胶质细胞)主要负责神经组织的整体稳态。星形胶质细胞控制离子、神经递质、激素、代谢物的稳态,并负责中枢神经系统的神经保护和防御。少突胶质细胞提供轴突的髓鞘形成,从而支持和维持中枢神经系统连接组。小胶质细胞是适应中枢神经系统环境的组织巨噬细胞,具有多种生理功能,包括通过突触修剪调节突触连通性,调节神经发生,甚至调节神经元兴奋性。神经胶质细胞表达许多受体、转运体和通道,使神经胶质细胞能够感知和跟踪神经元活动。这些受体的激活触发细胞内离子信号,这些信号控制着神经胶质支持和防御能力下的各种稳态级联反应。因此离子信号是神经胶质兴奋性的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Handbook of clinical neurology
Handbook of clinical neurology Medicine-Neurology (clinical)
CiteScore
4.10
自引率
0.00%
发文量
302
期刊介绍: The Handbook of Clinical Neurology (HCN) was originally conceived and edited by Pierre Vinken and George Bruyn as a prestigious, multivolume reference work that would cover all the disorders encountered by clinicians and researchers engaged in neurology and allied fields. The first series of the Handbook (Volumes 1-44) was published between 1968 and 1982 and was followed by a second series (Volumes 45-78), guided by the same editors, which concluded in 2002. By that time, the Handbook had come to represent one of the largest scientific works ever published. In 2002, Professors Michael J. Aminoff, François Boller, and Dick F. Swaab took on the responsibility of supervising the third (current) series, the first volumes of which published in 2003. They have designed this series to encompass both clinical neurology and also the basic and clinical neurosciences that are its underpinning. Given the enormity and complexity of the accumulating literature, it is almost impossible to keep abreast of developments in the field, thus providing the raison d''être for the series. The series will thus appeal to clinicians and investigators alike, providing to each an added dimension. Now, more than 140 volumes after it began, the Handbook of Clinical Neurology series has an unparalleled reputation for providing the latest information on fundamental research on the operation of the nervous system in health and disease, comprehensive clinical information on neurological and related disorders, and up-to-date treatment protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信