Nucleolar ribosomal RNA synthesis continues in differentiating lens fiber cells until abrupt nuclear degradation required for ocular lens transparency.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-03-31 DOI:10.1080/15476286.2025.2483118
Danielle Rayêe, U Thomas Meier, Carolina Eliscovich, Aleš Cvekl
{"title":"Nucleolar ribosomal RNA synthesis continues in differentiating lens fiber cells until abrupt nuclear degradation required for ocular lens transparency.","authors":"Danielle Rayêe, U Thomas Meier, Carolina Eliscovich, Aleš Cvekl","doi":"10.1080/15476286.2025.2483118","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular differentiation requires highly coordinated action of all three transcriptional systems to produce rRNAs, mRNAs and various 'short' and 'long' non-coding RNAs by RNA Polymerase I, II and III systems, respectively. RNA Polymerase I catalyzes transcription of about 400 copies of mammalian rDNA genes, generating 18S, 5.8S and 28S rRNA molecules. Lens fiber cell differentiation is a unique process to study transcriptional mechanisms of individual crystallin genes as their very high transcriptional outputs are directly comparable only to globin genes in erythrocytes. Importantly, both terminally differentiated lens fiber cells and mammalian erythrocytes degrade their nuclei through different mechanisms. In lens, the generation of the organelle-free zone (OFZ) includes the degradation of mitochondria, endoplasmic reticulum, Golgi apparatus and nuclei. Here, using RNA fluorescence <i>in situ</i> hybridization (FISH), we evaluated nascent rRNA transcription, located in the nucleoli, during the process of mouse lens fiber cell differentiation. Lens fiber cell nuclei undergo morphological changes including chromatin condensation prior to their denucleation. Remarkably, nascent rRNA transcription persists in all nuclei that are in direct proximity of the OFZ. Additionally, changes in both nuclei and nucleoli shape were evaluated via immunofluorescence detection of fibrillarin, nucleolin, UBF and other proteins. These studies demonstrate for the first time that highly condensed lens fiber cell nuclei have the capacity to support nascent rRNA transcription. Thus, we propose that 'late' production of rRNA molecules and consequently of ribosomes increases crystallin protein synthesis machinery within the mature lens fibers.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-16"},"PeriodicalIF":3.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2025.2483118","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular differentiation requires highly coordinated action of all three transcriptional systems to produce rRNAs, mRNAs and various 'short' and 'long' non-coding RNAs by RNA Polymerase I, II and III systems, respectively. RNA Polymerase I catalyzes transcription of about 400 copies of mammalian rDNA genes, generating 18S, 5.8S and 28S rRNA molecules. Lens fiber cell differentiation is a unique process to study transcriptional mechanisms of individual crystallin genes as their very high transcriptional outputs are directly comparable only to globin genes in erythrocytes. Importantly, both terminally differentiated lens fiber cells and mammalian erythrocytes degrade their nuclei through different mechanisms. In lens, the generation of the organelle-free zone (OFZ) includes the degradation of mitochondria, endoplasmic reticulum, Golgi apparatus and nuclei. Here, using RNA fluorescence in situ hybridization (FISH), we evaluated nascent rRNA transcription, located in the nucleoli, during the process of mouse lens fiber cell differentiation. Lens fiber cell nuclei undergo morphological changes including chromatin condensation prior to their denucleation. Remarkably, nascent rRNA transcription persists in all nuclei that are in direct proximity of the OFZ. Additionally, changes in both nuclei and nucleoli shape were evaluated via immunofluorescence detection of fibrillarin, nucleolin, UBF and other proteins. These studies demonstrate for the first time that highly condensed lens fiber cell nuclei have the capacity to support nascent rRNA transcription. Thus, we propose that 'late' production of rRNA molecules and consequently of ribosomes increases crystallin protein synthesis machinery within the mature lens fibers.

核仁核糖体RNA合成继续分化晶状体纤维细胞,直到晶状体透明所需的突然核降解。
细胞分化需要三种转录系统的高度协调作用,分别通过RNA聚合酶I、II和III系统产生RNAs、mrna和各种“短”和“长”非编码RNA。RNA聚合酶I催化大约400个哺乳动物rDNA基因拷贝的转录,产生18S、5.8S和28S rRNA分子。晶状体纤维细胞分化是研究单个晶体蛋白基因转录机制的独特过程,因为它们非常高的转录输出只能与红细胞中的珠蛋白基因直接比较。重要的是,终末分化的晶状体纤维细胞和哺乳动物红细胞都通过不同的机制降解其细胞核。在晶状体中,无细胞器区(OFZ)的产生包括线粒体、内质网、高尔基体和细胞核的降解。在这里,我们使用RNA荧光原位杂交(FISH)技术评估了小鼠晶状体纤维细胞分化过程中位于核仁的新生rRNA转录。晶状体纤维细胞核在去核前经历包括染色质凝聚在内的形态学改变。值得注意的是,新生rRNA转录在直接靠近OFZ的所有细胞核中持续存在。此外,通过免疫荧光检测纤维蛋白、核仁蛋白、UBF和其他蛋白质来评估细胞核和核仁形状的变化。这些研究首次证明高度凝聚的晶状体纤维细胞核具有支持新生rRNA转录的能力。因此,我们提出rRNA分子和核糖体的“晚期”生产增加了成熟晶状体纤维内的结晶蛋白合成机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信