Evaluation of Convolutional Neural Network-Based Posture Identification Model of Older Adults: From Silhouette of Sagittal Photographs.

IF 2.1 Q3 GERIATRICS & GERONTOLOGY
Naoki Sugiyama, Yoshihiro Kai, Hitoshi Koda, Toru Morihara, Noriyuki Kida
{"title":"Evaluation of Convolutional Neural Network-Based Posture Identification Model of Older Adults: From Silhouette of Sagittal Photographs.","authors":"Naoki Sugiyama, Yoshihiro Kai, Hitoshi Koda, Toru Morihara, Noriyuki Kida","doi":"10.3390/geriatrics10020049","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Posture is a significant indicator of health status in older adults. This study aimed to develop an automatic posture assessment tool based on sagittal photographs by validating recognition models using convolutional neural networks. <b>Methods</b>: A total of 9140 images were collected with data augmentation, and each image was labeled as either Ideal or Non-Ideal posture by physical therapists. The hidden and output layers of the models remained unchanged, while the loss function and optimizer were varied to construct four different model configurations: mean squared error and Adam (MSE & Adam), mean squared error and stochastic gradient descent (MSE & SGD), binary cross-entropy and Adam (BCE & Adam), and binary cross-entropy and stochastic gradient descent (BCE & SGD). <b>Results</b>: All four models demonstrated an improved accuracy in both the training and validation phases. However, the two BCE models exhibited divergence in validation loss, suggesting overfitting. Conversely, the two MSE models showed stability during learning. Therefore, we focused on the MSE models and evaluated their reliability using sensitivity, specificity, and Prevalence-Adjusted Bias-Adjusted Kappa (PABAK) based on the model's output and correct label. Sensitivity and specificity were 85% and 84% for MSE & Adam and 67% and 77% for MSE & SGD, respectively. Moreover, PABAK values for agreement with the correct label were 0.69 and 0.43 for MSE & Adam and MSE & SGD, respectively. <b>Conclusions</b>: Our findings indicate that the MSE & Adam model, in particular, can serve as a useful tool for screening inspections.</p>","PeriodicalId":12653,"journal":{"name":"Geriatrics","volume":"10 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932243/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geriatrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geriatrics10020049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Posture is a significant indicator of health status in older adults. This study aimed to develop an automatic posture assessment tool based on sagittal photographs by validating recognition models using convolutional neural networks. Methods: A total of 9140 images were collected with data augmentation, and each image was labeled as either Ideal or Non-Ideal posture by physical therapists. The hidden and output layers of the models remained unchanged, while the loss function and optimizer were varied to construct four different model configurations: mean squared error and Adam (MSE & Adam), mean squared error and stochastic gradient descent (MSE & SGD), binary cross-entropy and Adam (BCE & Adam), and binary cross-entropy and stochastic gradient descent (BCE & SGD). Results: All four models demonstrated an improved accuracy in both the training and validation phases. However, the two BCE models exhibited divergence in validation loss, suggesting overfitting. Conversely, the two MSE models showed stability during learning. Therefore, we focused on the MSE models and evaluated their reliability using sensitivity, specificity, and Prevalence-Adjusted Bias-Adjusted Kappa (PABAK) based on the model's output and correct label. Sensitivity and specificity were 85% and 84% for MSE & Adam and 67% and 77% for MSE & SGD, respectively. Moreover, PABAK values for agreement with the correct label were 0.69 and 0.43 for MSE & Adam and MSE & SGD, respectively. Conclusions: Our findings indicate that the MSE & Adam model, in particular, can serve as a useful tool for screening inspections.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geriatrics
Geriatrics 医学-老年医学
CiteScore
3.30
自引率
0.00%
发文量
115
审稿时长
20.03 days
期刊介绍: • Geriatric biology • Geriatric health services research • Geriatric medicine research • Geriatric neurology, stroke, cognition and oncology • Geriatric surgery • Geriatric physical functioning, physical health and activity • Geriatric psychiatry and psychology • Geriatric nutrition • Geriatric epidemiology • Geriatric rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信