The role of mediator subunit MED7 in Arabidopsis development.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-03-07 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1542950
Koppolu Raja Rajesh Kumar, Jeanette Blomberg, Stefan Björklund
{"title":"The role of mediator subunit MED7 in Arabidopsis development.","authors":"Koppolu Raja Rajesh Kumar, Jeanette Blomberg, Stefan Björklund","doi":"10.3389/fpls.2025.1542950","DOIUrl":null,"url":null,"abstract":"<p><p>MED7, a middle-module subunit of the transcriptional co-regulator Mediator complex, plays a critical role in gene regulation in <i>Arabidopsis thaliana</i>, where it is encoded by two paralogs, <i>MED7A</i> and <i>MED7B</i>. We present phenotypic analyses of homozygous MED7-silenced transgenic lines with significantly reduced expression of both <i>MED7</i> paralogs under autotrophic conditions. Our findings demonstrate that MED7 is essential for proper cotyledon opening during de-etiolation, as the silenced lines showed a marked delay in this process. Additionally, these lines displayed distinct morphological alterations, including hyponastic cotyledons, elongated hypocotyls, and modified root architecture, such as shorter primary roots and impaired root hair development in light-grown seedlings. <i>MED7</i> silencing also significantly hindered light-induced adventitious root (AR) formation on the hypocotyls of etiolated seedlings, leading to a notable reduction in AR production. Moreover, <i>MED7</i> silencing impacted the timing of floral transition and shoot branching, resulting in delayed flowering and an increased number of primary cauline branches on the inflorescence stem. Together, these results underscore a central role for MED7 in orchestrating key developmental processes in plants.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1542950"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1542950","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

MED7, a middle-module subunit of the transcriptional co-regulator Mediator complex, plays a critical role in gene regulation in Arabidopsis thaliana, where it is encoded by two paralogs, MED7A and MED7B. We present phenotypic analyses of homozygous MED7-silenced transgenic lines with significantly reduced expression of both MED7 paralogs under autotrophic conditions. Our findings demonstrate that MED7 is essential for proper cotyledon opening during de-etiolation, as the silenced lines showed a marked delay in this process. Additionally, these lines displayed distinct morphological alterations, including hyponastic cotyledons, elongated hypocotyls, and modified root architecture, such as shorter primary roots and impaired root hair development in light-grown seedlings. MED7 silencing also significantly hindered light-induced adventitious root (AR) formation on the hypocotyls of etiolated seedlings, leading to a notable reduction in AR production. Moreover, MED7 silencing impacted the timing of floral transition and shoot branching, resulting in delayed flowering and an increased number of primary cauline branches on the inflorescence stem. Together, these results underscore a central role for MED7 in orchestrating key developmental processes in plants.

媒介亚基 MED7 在拟南芥发育过程中的作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信