Dihydroartemisinin attenuates PM-induced lung injury by inhibiting inflammation and regulating autophagy.

IF 3 3区 医学 Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Frontiers in Public Health Pub Date : 2025-03-07 eCollection Date: 2025-01-01 DOI:10.3389/fpubh.2025.1548224
Lingjing Liu, Jingli Li, Yincong Xue, Shuying Xie, Nian Dong, Chengshui Chen
{"title":"Dihydroartemisinin attenuates PM-induced lung injury by inhibiting inflammation and regulating autophagy.","authors":"Lingjing Liu, Jingli Li, Yincong Xue, Shuying Xie, Nian Dong, Chengshui Chen","doi":"10.3389/fpubh.2025.1548224","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The study investigates the effects and mechanisms of dihydroartemisinin (DHA) in mitigating lung injury induced by particulate matter (PM).</p><p><strong>Methods: </strong>The lung injury model was induced by PM particles <i>in vivo</i> and <i>in vitro</i>. Hematoxylin and Eosin (H&E) staining was utilized for the detection of the thickening of airway wall and the infiltration of inflammatory cells in mouse lung tissue. The expressions of inflammatory factors were detected in alveolar lavage fluid and cell supernatant. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, Caspase-1, Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), microtubule-associated protein 1 light chain 3-II (LC3-II) and Belcin-1 were used to observe the apoptosis and autophagy related expressions in mouse lung tissue, and p-p65 was detected by immunofluorescence.</p><p><strong>Results: </strong>H&E staining revealed DHA alleviates PM-induced lung injury <i>in vivo</i>. Moreover, DHA reduced IL-6, IL-8, and IL-1β levels by ~50% (<i>p</i> < 0.05), highlighting its anti-inflammatory effects. Furthermore, immunohistochemistry showed that DHA treatment inhibited the pro-apoptotic expression of Bax/BCL2 and cleaved-Caspase-3, respectively. In addition, immunofluorescence staining revealed that the LC3-II and Beclin-1 levels dramatically increased in the PM group compared to Control group, but greatly reduced by DHA. Further, we found that DHA inhibited the activation of the NF-KB signaling pathway.</p><p><strong>Conclusion: </strong>DHA protects against PM-induced lung injury through anti-inflammatory, anti-apoptotic, and autophagy-regulating mechanisms, offering a potential drug option for improving PM-induced lung injury.</p>","PeriodicalId":12548,"journal":{"name":"Frontiers in Public Health","volume":"13 ","pages":"1548224"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fpubh.2025.1548224","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The study investigates the effects and mechanisms of dihydroartemisinin (DHA) in mitigating lung injury induced by particulate matter (PM).

Methods: The lung injury model was induced by PM particles in vivo and in vitro. Hematoxylin and Eosin (H&E) staining was utilized for the detection of the thickening of airway wall and the infiltration of inflammatory cells in mouse lung tissue. The expressions of inflammatory factors were detected in alveolar lavage fluid and cell supernatant. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, Caspase-1, Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), microtubule-associated protein 1 light chain 3-II (LC3-II) and Belcin-1 were used to observe the apoptosis and autophagy related expressions in mouse lung tissue, and p-p65 was detected by immunofluorescence.

Results: H&E staining revealed DHA alleviates PM-induced lung injury in vivo. Moreover, DHA reduced IL-6, IL-8, and IL-1β levels by ~50% (p < 0.05), highlighting its anti-inflammatory effects. Furthermore, immunohistochemistry showed that DHA treatment inhibited the pro-apoptotic expression of Bax/BCL2 and cleaved-Caspase-3, respectively. In addition, immunofluorescence staining revealed that the LC3-II and Beclin-1 levels dramatically increased in the PM group compared to Control group, but greatly reduced by DHA. Further, we found that DHA inhibited the activation of the NF-KB signaling pathway.

Conclusion: DHA protects against PM-induced lung injury through anti-inflammatory, anti-apoptotic, and autophagy-regulating mechanisms, offering a potential drug option for improving PM-induced lung injury.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Public Health
Frontiers in Public Health Medicine-Public Health, Environmental and Occupational Health
CiteScore
4.80
自引率
7.70%
发文量
4469
审稿时长
14 weeks
期刊介绍: Frontiers in Public Health is a multidisciplinary open-access journal which publishes rigorously peer-reviewed research and is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians, policy makers and the public worldwide. The journal aims at overcoming current fragmentation in research and publication, promoting consistency in pursuing relevant scientific themes, and supporting finding dissemination and translation into practice. Frontiers in Public Health is organized into Specialty Sections that cover different areas of research in the field. Please refer to the author guidelines for details on article types and the submission process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信