Neuroglia and extracellular matrix molecules.

Q2 Medicine
Egor Dzyubenko, Dirk M Hermann
{"title":"Neuroglia and extracellular matrix molecules.","authors":"Egor Dzyubenko, Dirk M Hermann","doi":"10.1016/B978-0-443-19104-6.00010-3","DOIUrl":null,"url":null,"abstract":"<p><p>This chapter provides a comprehensive overview of the roles of astrocytes, microglia, and the extracellular matrix (ECM) in regulating neuroplasticity and maintaining brain homeostasis. Astrocytes provide essential metabolic support to neurons, regulate synapse development, support neuroplasticity mechanisms, and modulate neurotransmission. Microglia, the resident immune cells of the brain, play a critical role in neuroinflammatory responses and homeostatic brain regulation by modulating synapse formation and pruning. The extracellular space (ECS) mediates intercellular interactions, provides a highly regulated environment for intercellular communication, and is filled with ECM molecules. Proteoglycans and polysaccharides of the ECM play a vital role not only in brain development but also in brain function throughout life. In the injured brain, neuroplasticity and regeneration can be bidirectionally regulated as a result of the interplay between ECM, astrocytes, and microglia. The modulation of synaptic strength, structural remodeling, and modification of intrinsic neuronal properties are among the central mechanisms that contribute to neuronal plasticity in health and disease. We believe that the understanding of ECM-glia interactions and their role in neuroplasticity regulation is key to the development of novel therapeutic strategies in neurologic disorders.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"209 ","pages":"197-211"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of clinical neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-443-19104-6.00010-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter provides a comprehensive overview of the roles of astrocytes, microglia, and the extracellular matrix (ECM) in regulating neuroplasticity and maintaining brain homeostasis. Astrocytes provide essential metabolic support to neurons, regulate synapse development, support neuroplasticity mechanisms, and modulate neurotransmission. Microglia, the resident immune cells of the brain, play a critical role in neuroinflammatory responses and homeostatic brain regulation by modulating synapse formation and pruning. The extracellular space (ECS) mediates intercellular interactions, provides a highly regulated environment for intercellular communication, and is filled with ECM molecules. Proteoglycans and polysaccharides of the ECM play a vital role not only in brain development but also in brain function throughout life. In the injured brain, neuroplasticity and regeneration can be bidirectionally regulated as a result of the interplay between ECM, astrocytes, and microglia. The modulation of synaptic strength, structural remodeling, and modification of intrinsic neuronal properties are among the central mechanisms that contribute to neuronal plasticity in health and disease. We believe that the understanding of ECM-glia interactions and their role in neuroplasticity regulation is key to the development of novel therapeutic strategies in neurologic disorders.

神经胶质和细胞外基质分子。
本章全面概述了星形胶质细胞、小胶质细胞和细胞外基质(ECM)在调节神经可塑性和维持大脑稳态中的作用。星形胶质细胞为神经元提供必要的代谢支持,调节突触发育,支持神经可塑性机制,调节神经传递。小胶质细胞是大脑的常驻免疫细胞,通过调节突触的形成和修剪,在神经炎症反应和大脑稳态调节中发挥关键作用。细胞外空间(ECS)介导细胞间相互作用,为细胞间通信提供高度调控的环境,并充满ECM分子。脑外基质的蛋白聚糖和多糖不仅在脑发育过程中起着至关重要的作用,而且在整个生命过程中都对脑功能起着至关重要的作用。在损伤的大脑中,神经可塑性和再生可以双向调节,这是ECM、星形胶质细胞和小胶质细胞之间相互作用的结果。突触强度的调节、结构重塑和神经元固有特性的改变是促进健康和疾病中神经元可塑性的主要机制。我们相信,了解ecm -胶质细胞相互作用及其在神经可塑性调节中的作用是开发神经系统疾病新治疗策略的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Handbook of clinical neurology
Handbook of clinical neurology Medicine-Neurology (clinical)
CiteScore
4.10
自引率
0.00%
发文量
302
期刊介绍: The Handbook of Clinical Neurology (HCN) was originally conceived and edited by Pierre Vinken and George Bruyn as a prestigious, multivolume reference work that would cover all the disorders encountered by clinicians and researchers engaged in neurology and allied fields. The first series of the Handbook (Volumes 1-44) was published between 1968 and 1982 and was followed by a second series (Volumes 45-78), guided by the same editors, which concluded in 2002. By that time, the Handbook had come to represent one of the largest scientific works ever published. In 2002, Professors Michael J. Aminoff, François Boller, and Dick F. Swaab took on the responsibility of supervising the third (current) series, the first volumes of which published in 2003. They have designed this series to encompass both clinical neurology and also the basic and clinical neurosciences that are its underpinning. Given the enormity and complexity of the accumulating literature, it is almost impossible to keep abreast of developments in the field, thus providing the raison d''être for the series. The series will thus appeal to clinicians and investigators alike, providing to each an added dimension. Now, more than 140 volumes after it began, the Handbook of Clinical Neurology series has an unparalleled reputation for providing the latest information on fundamental research on the operation of the nervous system in health and disease, comprehensive clinical information on neurological and related disorders, and up-to-date treatment protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信