{"title":"The advances in creating Crabtree-negative Saccharomyces cerevisiae and the application for chemicals biosynthesis.","authors":"Yalin Guo, Zhen Xiong, Haotian Zhai, Yuqi Wang, Qingsheng Qi, Jin Hou","doi":"10.1093/femsyr/foaf014","DOIUrl":null,"url":null,"abstract":"<p><p>Saccharomyces cerevisiae is a promising microbial cell factory. However, the overflow metabolism, known as the Crabtree effect, directs the majority of the carbon source toward ethanol production, in many cases, resulting in low yields of other target chemicals and byproducts accumulation. To construct Crabtree-negative S. cerevisiae, the deletion of pyruvate decarboxylases and/or ethanol dehydrogenases is required. However, these modifications compromises the growth of the strains on glucose. This review discusses the metabolic engineering approaches used to eliminate ethanol production, the efforts to alleviate growth defect of Crabtree-negative strains, and the underlying mechanisms of the growth rescue. In addition, it summarizes the applications of Crabtree-negative S. cerevisiae in the synthesis of various chemicals such as lactic acid, 2,3-butanediol, malic acid, succinic acid, isobutanol, and others.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974387/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Saccharomyces cerevisiae is a promising microbial cell factory. However, the overflow metabolism, known as the Crabtree effect, directs the majority of the carbon source toward ethanol production, in many cases, resulting in low yields of other target chemicals and byproducts accumulation. To construct Crabtree-negative S. cerevisiae, the deletion of pyruvate decarboxylases and/or ethanol dehydrogenases is required. However, these modifications compromises the growth of the strains on glucose. This review discusses the metabolic engineering approaches used to eliminate ethanol production, the efforts to alleviate growth defect of Crabtree-negative strains, and the underlying mechanisms of the growth rescue. In addition, it summarizes the applications of Crabtree-negative S. cerevisiae in the synthesis of various chemicals such as lactic acid, 2,3-butanediol, malic acid, succinic acid, isobutanol, and others.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.