Unique Immune and Other Responses of Human Nasal Epithelial Cells Infected with H5N1 Avian Influenza Virus Compared to Seasonal Human Influenza A and B Viruses.
Tan Kai Sen, Liu Jing, Andiappan Anand, Lew Zhe Zhang Ryan, He Ting Ting, Ong Hsiao Hui, Tay Douglas, Aw Zhen Qin, Yi Bowen, Fauzi Arfah Mohd, Yogarajah Thinesshwary, Lee Ching Pei Carmen, Chu Justin Jang Hann, Chow Vincent T, Prabakaran Mookhan, Wang De-Yun
{"title":"Unique Immune and Other Responses of Human Nasal Epithelial Cells Infected with H5N1 Avian Influenza Virus Compared to Seasonal Human Influenza A and B Viruses.","authors":"Tan Kai Sen, Liu Jing, Andiappan Anand, Lew Zhe Zhang Ryan, He Ting Ting, Ong Hsiao Hui, Tay Douglas, Aw Zhen Qin, Yi Bowen, Fauzi Arfah Mohd, Yogarajah Thinesshwary, Lee Ching Pei Carmen, Chu Justin Jang Hann, Chow Vincent T, Prabakaran Mookhan, Wang De-Yun","doi":"10.1080/22221751.2025.2484330","DOIUrl":null,"url":null,"abstract":"<p><p>Highly pathogenic avian influenza (HPAI) virus (e.g. H5N1) infects the lower airway to cause severe infections, and constitute a prime candidate for the emergence of disease X. The nasal epithelium is the primary portal of entry for respiratory pathogens, serving as the airway's physical and immune barrier. While HPAI virus predominantly infects the lower airway, not much is known about its interactions with the nasal epithelium. Hence, we sought to elucidate and compare the differential responses of the nasal epithelium against HPAI infection that may contribute to its pathology, and to identify critical response markers. We infected human nasal epithelial cells (hNECs) cultured at the air-liquid interface from multiple healthy donors with clinical isolates of major human seasonal influenza viruses (H1N1, H3N2, influenza B) and HPAI H5N1. The infected cells were subjected to virologic, transcriptomic and secretory protein analyses. While less adapted to infecting the nasal epithelium, HPAI H5N1 elicited unique host responses unlike seasonal influenza. Interestingly, H5N1 infection of hNECs induced responses indicative of subdued antiviral activity (e.g. reduced expression of IFNβ, and inflammasome mediators, IL-1α and IL-1β); decreased wound healing; suppressed re-epithelialization; compromised epithelial barrier integrity; diminished responses to oxidative stress; and increased transmembrane solute and ion carrier gene expression. These unique molecular changes in response to H5N1 infection may represent potential targets for enhancing diagnostic and therapeutic strategies for better surveillance and management of HPAI infection in humans.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2484330"},"PeriodicalIF":8.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2025.2484330","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Highly pathogenic avian influenza (HPAI) virus (e.g. H5N1) infects the lower airway to cause severe infections, and constitute a prime candidate for the emergence of disease X. The nasal epithelium is the primary portal of entry for respiratory pathogens, serving as the airway's physical and immune barrier. While HPAI virus predominantly infects the lower airway, not much is known about its interactions with the nasal epithelium. Hence, we sought to elucidate and compare the differential responses of the nasal epithelium against HPAI infection that may contribute to its pathology, and to identify critical response markers. We infected human nasal epithelial cells (hNECs) cultured at the air-liquid interface from multiple healthy donors with clinical isolates of major human seasonal influenza viruses (H1N1, H3N2, influenza B) and HPAI H5N1. The infected cells were subjected to virologic, transcriptomic and secretory protein analyses. While less adapted to infecting the nasal epithelium, HPAI H5N1 elicited unique host responses unlike seasonal influenza. Interestingly, H5N1 infection of hNECs induced responses indicative of subdued antiviral activity (e.g. reduced expression of IFNβ, and inflammasome mediators, IL-1α and IL-1β); decreased wound healing; suppressed re-epithelialization; compromised epithelial barrier integrity; diminished responses to oxidative stress; and increased transmembrane solute and ion carrier gene expression. These unique molecular changes in response to H5N1 infection may represent potential targets for enhancing diagnostic and therapeutic strategies for better surveillance and management of HPAI infection in humans.
期刊介绍:
Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses.
The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries.
This journal addresses topics of critical biological and clinical importance, including but not limited to:
- Epidemic surveillance
- Clinical manifestations
- Diagnosis and management
- Cellular and molecular pathogenesis
- Innate and acquired immune responses between emerging microbes and their hosts
- Drug discovery
- Vaccine development research
Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.