Genomic discordance throws a wrench in the parallel speciation hypothesis for scincid lizards.

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2025-03-22 DOI:10.1093/evolut/qpaf059
Jonathan Q Richmond, Andrew D Gottscho, Elizabeth L Jockusch, Adam D Leaché, Robert N Fisher, Tod W Reeder
{"title":"Genomic discordance throws a wrench in the parallel speciation hypothesis for scincid lizards.","authors":"Jonathan Q Richmond, Andrew D Gottscho, Elizabeth L Jockusch, Adam D Leaché, Robert N Fisher, Tod W Reeder","doi":"10.1093/evolut/qpaf059","DOIUrl":null,"url":null,"abstract":"<p><p>Parallel evolution of the same reproductive isolation barrier within a taxon is an indicator of ecology's role in speciation (i.e., parallel speciation), yet spatiotemporal variability in the efficacy of the barrier can present challenges to retracing how it evolved. Here, we revisit the evidence for a candidate example of parallel speciation in a clade of scincid lizards (the Plestiodon skiltonianus complex) using genomic data, with emphasis on determining whether hybridization may have confounded the phylogenetic signals of parallelism for this group. Our results show a striking case of genealogical discordance, where mitochondrial loci support multiple origins of a derived large-bodied morphotype (Plestiodon gilberti) within a small-bodied ancestor (Plestiodon skiltonianus), while nuclear loci indicate a single origin. We attribute the discordance to separate, temporally-spaced hybridization events that led to asymmetric capture of P. skiltonianus mitochondria in different regional lineages of P. gilberti. Nuclear introgression showed a similar directional bias but was less pervasive. We demonstrate how a mechanical reproductive barrier previously identified for this group explains the asymmetry of mitochondrial introgression, given that hybrid matings are most likely when the male is P. gilberti and the female is P. skiltonianus. We then use permutation tests of morphological data to provide evidence that the mechanical barrier is less stringent in areas where hybridization is inferred to have occurred. Our results demonstrate how biased hybridization can dictate which genetic variants are transmitted between species and emphasize the importance of accounting for introgression and deep coalescence in identifying phyletic signatures of parallel speciation.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf059","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Parallel evolution of the same reproductive isolation barrier within a taxon is an indicator of ecology's role in speciation (i.e., parallel speciation), yet spatiotemporal variability in the efficacy of the barrier can present challenges to retracing how it evolved. Here, we revisit the evidence for a candidate example of parallel speciation in a clade of scincid lizards (the Plestiodon skiltonianus complex) using genomic data, with emphasis on determining whether hybridization may have confounded the phylogenetic signals of parallelism for this group. Our results show a striking case of genealogical discordance, where mitochondrial loci support multiple origins of a derived large-bodied morphotype (Plestiodon gilberti) within a small-bodied ancestor (Plestiodon skiltonianus), while nuclear loci indicate a single origin. We attribute the discordance to separate, temporally-spaced hybridization events that led to asymmetric capture of P. skiltonianus mitochondria in different regional lineages of P. gilberti. Nuclear introgression showed a similar directional bias but was less pervasive. We demonstrate how a mechanical reproductive barrier previously identified for this group explains the asymmetry of mitochondrial introgression, given that hybrid matings are most likely when the male is P. gilberti and the female is P. skiltonianus. We then use permutation tests of morphological data to provide evidence that the mechanical barrier is less stringent in areas where hybridization is inferred to have occurred. Our results demonstrate how biased hybridization can dictate which genetic variants are transmitted between species and emphasize the importance of accounting for introgression and deep coalescence in identifying phyletic signatures of parallel speciation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信