Duo Ning, Yuqing Deng, Tong Gao, Yang Yang, Gengzhan Chen, Simon Zhongyuan Tian, Meizhen Zheng
{"title":"TF-chRDP: a method for simultaneously capturing transcription factor binding chromatin-associated RNA, DNA and protein.","authors":"Duo Ning, Yuqing Deng, Tong Gao, Yang Yang, Gengzhan Chen, Simon Zhongyuan Tian, Meizhen Zheng","doi":"10.3389/fcell.2025.1561540","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription factors (TFs) play a crucial role in the regulation of gene expression and the structural organization of chromatin. They interact with proteins, RNA, and chromatin DNA to exert their functions. Therefore, an efficient and straightforward experimental approach that simultaneously captures the interactions of transcription factors with DNA, RNA, and proteins is essential for studying these regulatory proteins. In this study, we developed a novel method, TF-chRDP (Transcription Factor binding Chromatin-associated RNA, DNA, and Protein), which allows for the concurrent capture of these biomolecules in a single experiment. We enriched chromatin complexes using specific antibodies and divided the chromatin into three fractions: one for DNA library preparation to analyze the genomic binding sites of transcription factors, another for RNA library preparation to investigate the RNA associated with transcription factor binding, and the third for proteomic analysis to identify protein cofactors interacting with transcription factors. We applied this method to study the transcription factor p53 and its associated chromatin complexes. The results demonstrated high specificity in the enrichment of DNA, RNA and proteins. This method provides an efficient tool for simultaneously capturing chromatin-associated RNA, DNA and protein bound to specific TF, making it particularly useful for analyzing the role of protein-DNA-RNA complexes in transcriptional regulation.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1561540"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1561540","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcription factors (TFs) play a crucial role in the regulation of gene expression and the structural organization of chromatin. They interact with proteins, RNA, and chromatin DNA to exert their functions. Therefore, an efficient and straightforward experimental approach that simultaneously captures the interactions of transcription factors with DNA, RNA, and proteins is essential for studying these regulatory proteins. In this study, we developed a novel method, TF-chRDP (Transcription Factor binding Chromatin-associated RNA, DNA, and Protein), which allows for the concurrent capture of these biomolecules in a single experiment. We enriched chromatin complexes using specific antibodies and divided the chromatin into three fractions: one for DNA library preparation to analyze the genomic binding sites of transcription factors, another for RNA library preparation to investigate the RNA associated with transcription factor binding, and the third for proteomic analysis to identify protein cofactors interacting with transcription factors. We applied this method to study the transcription factor p53 and its associated chromatin complexes. The results demonstrated high specificity in the enrichment of DNA, RNA and proteins. This method provides an efficient tool for simultaneously capturing chromatin-associated RNA, DNA and protein bound to specific TF, making it particularly useful for analyzing the role of protein-DNA-RNA complexes in transcriptional regulation.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.