Activated carbon-chitosan hydrogel dressing loaded with LL37 microspheres for the treatment of infected wounds: In vivo antimicrobial and antitoxin assessment.

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Bee-Yee Lim, Fazren Azmi, Shiow-Fern Ng
{"title":"Activated carbon-chitosan hydrogel dressing loaded with LL37 microspheres for the treatment of infected wounds: In vivo antimicrobial and antitoxin assessment.","authors":"Bee-Yee Lim, Fazren Azmi, Shiow-Fern Ng","doi":"10.1007/s13346-025-01835-7","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing is a complex process which is crucial for recovery. Delayed wound healing which is caused by the presence of pathogens has posed significant clinical implications affecting millions of patients globally. Wounds infection caused by Pseudomonas aeruginosa present significant challenges due to their resistance to multiple antimicrobial drugs. The Gram-negative bacteria secretes endotoxin lipopolysaccharide (LPS), which impede wound healing and may lead to severe complications, including life-threatening sepsis. Previously, our laboratory has successfully developed a new hydrogel containing a synthetic antimicrobial peptide as an alternative therapy to conventional antibiotics. This hydrogel contains LL37 microspheres embedded into activated carbon-chitosan hydrogel (LL37-AC-CS). LL37-AC-CS has shown desirable physicochemical properties as well as promising antimicrobial and antitoxin activities in vitro. This current study has two main objectives. The first is to evaluate the in vivo antimicrobial efficacy of LL37-AC-CS hydrogel in full-thickness rat wounds infected with P. aeruginosa. The second objective is to investigate the antitoxin efficacy on the rat wound models treated with E. coli endotoxins LPS. The wound healing efficacy was assessed in terms of the macroscopic appearance, wound contraction rate, histology, and wound tissue biochemical markers. As a result, the LL37-AC-CS hydrogel exhibited remarkable antimicrobial and antitoxin efficacy as compared to the controls. The wound healing efficacy was evident in increased wound closure rate and decrease in bacterial bioburden, and favourable changes in wound healing biomarkers namely the myeloperoxidase, interleukin-6 and tumour necrosis factor α. The elevation of hydroxyproline levels in the LPS-treated wound model indicates there was collagen synthesis. In conclusion, the results presented in this study have significantly enhanced our comprehension of the LL37-AC-CS hydrogel's potential in wound healing. Specifically, the research highlights its effectiveness in eliminating endotoxins and preventing bacterial growth.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01835-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wound healing is a complex process which is crucial for recovery. Delayed wound healing which is caused by the presence of pathogens has posed significant clinical implications affecting millions of patients globally. Wounds infection caused by Pseudomonas aeruginosa present significant challenges due to their resistance to multiple antimicrobial drugs. The Gram-negative bacteria secretes endotoxin lipopolysaccharide (LPS), which impede wound healing and may lead to severe complications, including life-threatening sepsis. Previously, our laboratory has successfully developed a new hydrogel containing a synthetic antimicrobial peptide as an alternative therapy to conventional antibiotics. This hydrogel contains LL37 microspheres embedded into activated carbon-chitosan hydrogel (LL37-AC-CS). LL37-AC-CS has shown desirable physicochemical properties as well as promising antimicrobial and antitoxin activities in vitro. This current study has two main objectives. The first is to evaluate the in vivo antimicrobial efficacy of LL37-AC-CS hydrogel in full-thickness rat wounds infected with P. aeruginosa. The second objective is to investigate the antitoxin efficacy on the rat wound models treated with E. coli endotoxins LPS. The wound healing efficacy was assessed in terms of the macroscopic appearance, wound contraction rate, histology, and wound tissue biochemical markers. As a result, the LL37-AC-CS hydrogel exhibited remarkable antimicrobial and antitoxin efficacy as compared to the controls. The wound healing efficacy was evident in increased wound closure rate and decrease in bacterial bioburden, and favourable changes in wound healing biomarkers namely the myeloperoxidase, interleukin-6 and tumour necrosis factor α. The elevation of hydroxyproline levels in the LPS-treated wound model indicates there was collagen synthesis. In conclusion, the results presented in this study have significantly enhanced our comprehension of the LL37-AC-CS hydrogel's potential in wound healing. Specifically, the research highlights its effectiveness in eliminating endotoxins and preventing bacterial growth.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信