Unraveling the pathogenomics of Rhizoctonia solani infecting proso millet (Panicum miliaceum L.): genomic perspective on ruthless virulence and adaptive evolution.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2025-03-07 eCollection Date: 2025-01-01 DOI:10.3389/fmicb.2025.1557991
Prasanna S Koti, T S S K Patro, K B Palanna, B Jeevan, Porapu Prasanth, G V Ramesh, N Anuradha, Y Sandhya Rani, Ungata Triveni, K Lavanya Devi, T Tharana Poonacha, Farooq Khan, Boda Praveen, M Divya, D Sabina Mary, V Prasanna Kumari, T E Nagaraja, R Madhusudhana, C Tara Satyavathi
{"title":"Unraveling the pathogenomics of <i>Rhizoctonia solani</i> infecting proso millet (<i>Panicum miliaceum</i> L.): genomic perspective on ruthless virulence and adaptive evolution.","authors":"Prasanna S Koti, T S S K Patro, K B Palanna, B Jeevan, Porapu Prasanth, G V Ramesh, N Anuradha, Y Sandhya Rani, Ungata Triveni, K Lavanya Devi, T Tharana Poonacha, Farooq Khan, Boda Praveen, M Divya, D Sabina Mary, V Prasanna Kumari, T E Nagaraja, R Madhusudhana, C Tara Satyavathi","doi":"10.3389/fmicb.2025.1557991","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Banded sheath blight (Bsb), caused by <i>Rhizoctonia solani</i>, is an emerging threat to proso millet cultivation, significantly impacting yield and grain quality. This study on the pathogenomics of <i>R. solani</i> seeks to unravel its genetic mechanisms, identify key virulence factors, decode host-pathogen interactions, and pinpoint molecular targets for effective control strategies.</p><p><strong>Methods: </strong><i>R. solani</i> isolates were collected from various regions across India, resulting in six distinct isolates. These isolates were comprehensively characterized through morphological observations, molecular analyses, and virulence assessments to gain comprehensive insights into their diversity and pathogenic potential. The most virulent strain, designated VAP-1, infecting proso millet, was sequenced using the Illumina platform and <i>de novo</i> assembled using the SPAdes assembler, resulting in a highly complete genome. Functional regions of the genome were predicted and annotated using Funannotate. A subsequent comparative genomics study and secretome analysis were conducted to support functional genomic investigations.</p><p><strong>Results: </strong>The VAP-1 genome assembly resulted in a total size of 47.12 Mb, with approximately 17.62% of the genome consisting of repetitive sequences, predominantly dominated by interspersed elements (around 97.8%). These interspersed elements were primarily classified as retrotransposons (72%), with DNA transposons comprising a smaller proportion (5%), while the remaining interspersed sequences were not fully annotated. Functional analysis of the genome revealed significant enrichment in KEGG pathways, including \"Carbohydrate metabolism,\" \"Translation,\" \"Signal transduction,\" and \"Transport and catabolism.\" In addition, Gene Ontology (GO) terms such as \"Proteolysis,\" \"Membrane,\" and \"ATP binding\" were notably enriched. The secretory protein profile of the VAP-1 genome from <i>R. solani</i> features key proteins from the major facilitator superfamily (MFS) transporters, (Trans) glycosidases, P-loop containing nucleoside triphosphate hydrolases, and galactose oxidase, all within the central domain superfamily. Glycoside hydrolases represent the largest class of CAZymes in the VAP-1 genome. Comparative genomic analysis of VAP-1 with other <i>R. solani</i> strains infecting Poaceae (e.g., rice) and non-Poaceae (e.g., sugar beet and tobacco) hosts showed that VAP-1 clusters closely with rice-infecting strains at the species level, yet exhibits a greater divergence in genomic similarity from strains infecting sugar beet and tobacco. Notably, variations were observed in important secretory proteins, such as multiple base deletions in MFS proteins across strains infecting proso millet, rice, and sugar beet.</p><p><strong>Discussion: </strong>Functional analysis of the VAP-1 genome has unveiled a wealth of insights, though we have only begun to scratch the surface. KEGG and GO annotations point to critical proteins that are essential for host infection, providing the pathogen with a potent arsenal for successful penetration, survival, and dissemination within the host. The secretory proteins encoded in the VAP-1 genome play a pivotal role in equipping the pathogen with the necessary tools to degrade plant cell wall polymers, release cell wall-bound saccharides, and break down polysaccharides for energy utilization and host colonization. Notable variations were observed in several secretome superfamily proteins within the VAP-1 strain. These findings underscore the genomic diversity present within <i>R. solani</i> strains and suggest possible adaptations that may contribute to host specificity.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"16 ","pages":"1557991"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2025.1557991","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Banded sheath blight (Bsb), caused by Rhizoctonia solani, is an emerging threat to proso millet cultivation, significantly impacting yield and grain quality. This study on the pathogenomics of R. solani seeks to unravel its genetic mechanisms, identify key virulence factors, decode host-pathogen interactions, and pinpoint molecular targets for effective control strategies.

Methods: R. solani isolates were collected from various regions across India, resulting in six distinct isolates. These isolates were comprehensively characterized through morphological observations, molecular analyses, and virulence assessments to gain comprehensive insights into their diversity and pathogenic potential. The most virulent strain, designated VAP-1, infecting proso millet, was sequenced using the Illumina platform and de novo assembled using the SPAdes assembler, resulting in a highly complete genome. Functional regions of the genome were predicted and annotated using Funannotate. A subsequent comparative genomics study and secretome analysis were conducted to support functional genomic investigations.

Results: The VAP-1 genome assembly resulted in a total size of 47.12 Mb, with approximately 17.62% of the genome consisting of repetitive sequences, predominantly dominated by interspersed elements (around 97.8%). These interspersed elements were primarily classified as retrotransposons (72%), with DNA transposons comprising a smaller proportion (5%), while the remaining interspersed sequences were not fully annotated. Functional analysis of the genome revealed significant enrichment in KEGG pathways, including "Carbohydrate metabolism," "Translation," "Signal transduction," and "Transport and catabolism." In addition, Gene Ontology (GO) terms such as "Proteolysis," "Membrane," and "ATP binding" were notably enriched. The secretory protein profile of the VAP-1 genome from R. solani features key proteins from the major facilitator superfamily (MFS) transporters, (Trans) glycosidases, P-loop containing nucleoside triphosphate hydrolases, and galactose oxidase, all within the central domain superfamily. Glycoside hydrolases represent the largest class of CAZymes in the VAP-1 genome. Comparative genomic analysis of VAP-1 with other R. solani strains infecting Poaceae (e.g., rice) and non-Poaceae (e.g., sugar beet and tobacco) hosts showed that VAP-1 clusters closely with rice-infecting strains at the species level, yet exhibits a greater divergence in genomic similarity from strains infecting sugar beet and tobacco. Notably, variations were observed in important secretory proteins, such as multiple base deletions in MFS proteins across strains infecting proso millet, rice, and sugar beet.

Discussion: Functional analysis of the VAP-1 genome has unveiled a wealth of insights, though we have only begun to scratch the surface. KEGG and GO annotations point to critical proteins that are essential for host infection, providing the pathogen with a potent arsenal for successful penetration, survival, and dissemination within the host. The secretory proteins encoded in the VAP-1 genome play a pivotal role in equipping the pathogen with the necessary tools to degrade plant cell wall polymers, release cell wall-bound saccharides, and break down polysaccharides for energy utilization and host colonization. Notable variations were observed in several secretome superfamily proteins within the VAP-1 strain. These findings underscore the genomic diversity present within R. solani strains and suggest possible adaptations that may contribute to host specificity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信