Differences in predictions of marine species distribution models based on expert maps and opportunistic occurrences.

IF 5.2 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Zhixin Zhang, Jamie M Kass, Ákos Bede-Fazekas, Stefano Mammola, Junmei Qu, Jorge García Molinos, Jiqi Gu, Hongwei Huang, Meng Qu, Ying Yue, Geng Qin, Qiang Lin
{"title":"Differences in predictions of marine species distribution models based on expert maps and opportunistic occurrences.","authors":"Zhixin Zhang, Jamie M Kass, Ákos Bede-Fazekas, Stefano Mammola, Junmei Qu, Jorge García Molinos, Jiqi Gu, Hongwei Huang, Meng Qu, Ying Yue, Geng Qin, Qiang Lin","doi":"10.1111/cobi.70015","DOIUrl":null,"url":null,"abstract":"<p><p>Species distribution models (SDMs) are important tools for assessing biodiversity change. These models require high-quality occurrence data, which are not always available. Therefore, it is increasingly important to determine how data choice affects predictions of species' ranges. Opportunistic occurrence records and expert maps are both widely used sources of species data for SDMs. However, it is unclear how SDMs based on these data differ in performance, particularly for the marine realm. We built SDMs for 233 marine fish species from 2 families with these 2 occurrence data types and compared their performances and potential distribution predictions. Opportunistic occurrences were sourced from field surveys in the South China Sea and online repositories and expert maps from the International Union for Conservation of Nature Red List database. We used generalized linear models to explore drivers of differences in prediction between the 2 model types. When projecting to distinct regions with no occurrence data, models calibrated using opportunistic occurrences performed better than those using expert maps, indicating better transferability to new environments. Differences in marine predictor values between the 2 data types accounted for the dissimilarity in model predictions, likely because expert maps included large areas with unsuitable environmental conditions. Dissimilarity levels among fish families differed, suggesting a taxonomic bias in biodiversity data between data sources. Our findings highlight the sensitivity of species distribution predictions to the choice of distributional data. Although expert maps have an important role in biodiversity modeling, we suggest researchers assess the accuracy of these maps and reduce commission errors based on knowledge of target species.</p>","PeriodicalId":10689,"journal":{"name":"Conservation Biology","volume":" ","pages":"e70015"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/cobi.70015","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Species distribution models (SDMs) are important tools for assessing biodiversity change. These models require high-quality occurrence data, which are not always available. Therefore, it is increasingly important to determine how data choice affects predictions of species' ranges. Opportunistic occurrence records and expert maps are both widely used sources of species data for SDMs. However, it is unclear how SDMs based on these data differ in performance, particularly for the marine realm. We built SDMs for 233 marine fish species from 2 families with these 2 occurrence data types and compared their performances and potential distribution predictions. Opportunistic occurrences were sourced from field surveys in the South China Sea and online repositories and expert maps from the International Union for Conservation of Nature Red List database. We used generalized linear models to explore drivers of differences in prediction between the 2 model types. When projecting to distinct regions with no occurrence data, models calibrated using opportunistic occurrences performed better than those using expert maps, indicating better transferability to new environments. Differences in marine predictor values between the 2 data types accounted for the dissimilarity in model predictions, likely because expert maps included large areas with unsuitable environmental conditions. Dissimilarity levels among fish families differed, suggesting a taxonomic bias in biodiversity data between data sources. Our findings highlight the sensitivity of species distribution predictions to the choice of distributional data. Although expert maps have an important role in biodiversity modeling, we suggest researchers assess the accuracy of these maps and reduce commission errors based on knowledge of target species.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Conservation Biology
Conservation Biology 环境科学-环境科学
CiteScore
12.70
自引率
3.20%
发文量
175
审稿时长
2 months
期刊介绍: Conservation Biology welcomes submissions that address the science and practice of conserving Earth's biological diversity. We encourage submissions that emphasize issues germane to any of Earth''s ecosystems or geographic regions and that apply diverse approaches to analyses and problem solving. Nevertheless, manuscripts with relevance to conservation that transcend the particular ecosystem, species, or situation described will be prioritized for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信