Zhixin Zhang, Jamie M Kass, Ákos Bede-Fazekas, Stefano Mammola, Junmei Qu, Jorge García Molinos, Jiqi Gu, Hongwei Huang, Meng Qu, Ying Yue, Geng Qin, Qiang Lin
{"title":"Differences in predictions of marine species distribution models based on expert maps and opportunistic occurrences.","authors":"Zhixin Zhang, Jamie M Kass, Ákos Bede-Fazekas, Stefano Mammola, Junmei Qu, Jorge García Molinos, Jiqi Gu, Hongwei Huang, Meng Qu, Ying Yue, Geng Qin, Qiang Lin","doi":"10.1111/cobi.70015","DOIUrl":null,"url":null,"abstract":"<p><p>Species distribution models (SDMs) are important tools for assessing biodiversity change. These models require high-quality occurrence data, which are not always available. Therefore, it is increasingly important to determine how data choice affects predictions of species' ranges. Opportunistic occurrence records and expert maps are both widely used sources of species data for SDMs. However, it is unclear how SDMs based on these data differ in performance, particularly for the marine realm. We built SDMs for 233 marine fish species from 2 families with these 2 occurrence data types and compared their performances and potential distribution predictions. Opportunistic occurrences were sourced from field surveys in the South China Sea and online repositories and expert maps from the International Union for Conservation of Nature Red List database. We used generalized linear models to explore drivers of differences in prediction between the 2 model types. When projecting to distinct regions with no occurrence data, models calibrated using opportunistic occurrences performed better than those using expert maps, indicating better transferability to new environments. Differences in marine predictor values between the 2 data types accounted for the dissimilarity in model predictions, likely because expert maps included large areas with unsuitable environmental conditions. Dissimilarity levels among fish families differed, suggesting a taxonomic bias in biodiversity data between data sources. Our findings highlight the sensitivity of species distribution predictions to the choice of distributional data. Although expert maps have an important role in biodiversity modeling, we suggest researchers assess the accuracy of these maps and reduce commission errors based on knowledge of target species.</p>","PeriodicalId":10689,"journal":{"name":"Conservation Biology","volume":" ","pages":"e70015"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/cobi.70015","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Species distribution models (SDMs) are important tools for assessing biodiversity change. These models require high-quality occurrence data, which are not always available. Therefore, it is increasingly important to determine how data choice affects predictions of species' ranges. Opportunistic occurrence records and expert maps are both widely used sources of species data for SDMs. However, it is unclear how SDMs based on these data differ in performance, particularly for the marine realm. We built SDMs for 233 marine fish species from 2 families with these 2 occurrence data types and compared their performances and potential distribution predictions. Opportunistic occurrences were sourced from field surveys in the South China Sea and online repositories and expert maps from the International Union for Conservation of Nature Red List database. We used generalized linear models to explore drivers of differences in prediction between the 2 model types. When projecting to distinct regions with no occurrence data, models calibrated using opportunistic occurrences performed better than those using expert maps, indicating better transferability to new environments. Differences in marine predictor values between the 2 data types accounted for the dissimilarity in model predictions, likely because expert maps included large areas with unsuitable environmental conditions. Dissimilarity levels among fish families differed, suggesting a taxonomic bias in biodiversity data between data sources. Our findings highlight the sensitivity of species distribution predictions to the choice of distributional data. Although expert maps have an important role in biodiversity modeling, we suggest researchers assess the accuracy of these maps and reduce commission errors based on knowledge of target species.
期刊介绍:
Conservation Biology welcomes submissions that address the science and practice of conserving Earth's biological diversity. We encourage submissions that emphasize issues germane to any of Earth''s ecosystems or geographic regions and that apply diverse approaches to analyses and problem solving. Nevertheless, manuscripts with relevance to conservation that transcend the particular ecosystem, species, or situation described will be prioritized for publication.