Sox as a Functionally Conserved Link Between Unicellular Ancestors and Human Stem Cell Control.

IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Emma U Hammarlund
{"title":"Sox as a Functionally Conserved Link Between Unicellular Ancestors and Human Stem Cell Control.","authors":"Emma U Hammarlund","doi":"10.1089/cell.2025.0011","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cells are key to human tissue maintenance. Because tissue maintenance allows us to live and reproduce, stem cell control is fundamental for animal life and evolution. A team of researchers set out to explore the origins of transcription factors at the core of the induction and the maintenance of stemnss. They focus on the conservation of the Sry-related box 2 (Sox2) and the octamer-binding transcriptor factor 4 (Oct4) in the Pit-Oct-Unc (POU) family. While these have been thought as animal-specific, the authors identified SOX and POU in pre-animal organisms. In particular, the SOX protein from a very simple unicellular organism was functionally conserved enough to reprogram somatic mouse cells to induce pluripotent stem cells. To ponder on the importance of their findings, we first need to step back a couple of hundred million years.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2025.0011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Stem cells are key to human tissue maintenance. Because tissue maintenance allows us to live and reproduce, stem cell control is fundamental for animal life and evolution. A team of researchers set out to explore the origins of transcription factors at the core of the induction and the maintenance of stemnss. They focus on the conservation of the Sry-related box 2 (Sox2) and the octamer-binding transcriptor factor 4 (Oct4) in the Pit-Oct-Unc (POU) family. While these have been thought as animal-specific, the authors identified SOX and POU in pre-animal organisms. In particular, the SOX protein from a very simple unicellular organism was functionally conserved enough to reprogram somatic mouse cells to induce pluripotent stem cells. To ponder on the importance of their findings, we first need to step back a couple of hundred million years.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular reprogramming
Cellular reprogramming CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
2.50
自引率
6.20%
发文量
37
审稿时长
3 months
期刊介绍: Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research. Cellular Reprogramming coverage includes: Somatic cell nuclear transfer and reprogramming in early embryos Embryonic stem cells Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos) Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies Epigenetics Adult stem cells and pluripotency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信