Editing the CYP19 Gene in Goat Embryos Using CRISPR/Cas9 and Somatic Cell Nuclear Transfer Techniques.

IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ahmad Pirali, Farnoosh Jafarpour, Mehdi Hajian, Seyed Hossein Hosseini Moghaddam, Reza Moradi, Nima Tanhaie-Vash, Mohsen Rahimi Andani, Tayebeh Izadi, Hanieh Shiralian-Esfahani, Zahra Safaeinejad, Wilfried Kues, Mohammad-Hossein Nasr-Esfahani, Shahin Eghbalsaied
{"title":"Editing the CYP19 Gene in Goat Embryos Using CRISPR/Cas9 and Somatic Cell Nuclear Transfer Techniques.","authors":"Ahmad Pirali, Farnoosh Jafarpour, Mehdi Hajian, Seyed Hossein Hosseini Moghaddam, Reza Moradi, Nima Tanhaie-Vash, Mohsen Rahimi Andani, Tayebeh Izadi, Hanieh Shiralian-Esfahani, Zahra Safaeinejad, Wilfried Kues, Mohammad-Hossein Nasr-Esfahani, Shahin Eghbalsaied","doi":"10.1089/cell.2024.0109","DOIUrl":null,"url":null,"abstract":"<p><p>The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) system is revolutionizing genome engineering and is expected to bring significant advancements in livestock traits, including the treatment of genetic diseases. This study focuses on CRISPR/Cas9-mediated modifications of the CYP19 gene, which encodes aromatase, an enzyme crucial for converting testosterone to estrogen and essential for steroid metabolism. Guide RNAs (gRNAs) were designed to target the CYP19 gene and cloned into the pX459 vector. The recombinant plasmid was then electrotransfected into fibroblast cells from a Lori-Bakhtiari buck, and these transfected cells were used for embryo production via somatic cell nuclear transfer (SCNT). The cloned embryos were evaluated for their progression through embryonic stages, showing no significant difference in blastocyst development between knock-out and unedited groups. The knockout efficiency was 78.4% in cells and 68.9% in goat blastocysts, demonstrating the successful depletion of CYP19. We successfully achieved a high rate of CYP19 gene-edited embryos through the combined application of cell electrotransfection and SCNT technologies, while maintaining the normal developmental rate of the embryos. These embryos can be used for transfer to generate knock-out goats, providing a foundation for further studies on CYP19's role in male fertility and production traits.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2024.0109","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) system is revolutionizing genome engineering and is expected to bring significant advancements in livestock traits, including the treatment of genetic diseases. This study focuses on CRISPR/Cas9-mediated modifications of the CYP19 gene, which encodes aromatase, an enzyme crucial for converting testosterone to estrogen and essential for steroid metabolism. Guide RNAs (gRNAs) were designed to target the CYP19 gene and cloned into the pX459 vector. The recombinant plasmid was then electrotransfected into fibroblast cells from a Lori-Bakhtiari buck, and these transfected cells were used for embryo production via somatic cell nuclear transfer (SCNT). The cloned embryos were evaluated for their progression through embryonic stages, showing no significant difference in blastocyst development between knock-out and unedited groups. The knockout efficiency was 78.4% in cells and 68.9% in goat blastocysts, demonstrating the successful depletion of CYP19. We successfully achieved a high rate of CYP19 gene-edited embryos through the combined application of cell electrotransfection and SCNT technologies, while maintaining the normal developmental rate of the embryos. These embryos can be used for transfer to generate knock-out goats, providing a foundation for further studies on CYP19's role in male fertility and production traits.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular reprogramming
Cellular reprogramming CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
2.50
自引率
6.20%
发文量
37
审稿时长
3 months
期刊介绍: Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research. Cellular Reprogramming coverage includes: Somatic cell nuclear transfer and reprogramming in early embryos Embryonic stem cells Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos) Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies Epigenetics Adult stem cells and pluripotency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信