Rising nitrogen deposition leads to only a minor increase in CO2 uptake in Earth system models.

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Communications Earth & Environment Pub Date : 2025-01-01 Epub Date: 2025-03-19 DOI:10.1038/s43247-024-01943-1
Sian Kou-Giesbrecht, Vivek K Arora, Chris D Jones, Victor Brovkin, Tomohiro Hajima, Michio Kawamiya, Spencer K Liddicoat, Alexander J Winkler, Sönke Zaehle
{"title":"Rising nitrogen deposition leads to only a minor increase in CO<sub>2</sub> uptake in Earth system models.","authors":"Sian Kou-Giesbrecht, Vivek K Arora, Chris D Jones, Victor Brovkin, Tomohiro Hajima, Michio Kawamiya, Spencer K Liddicoat, Alexander J Winkler, Sönke Zaehle","doi":"10.1038/s43247-024-01943-1","DOIUrl":null,"url":null,"abstract":"<p><p>Current frameworks for evaluating biogeochemical climate change feedbacks in Earth System Models lack an explicit consideration of nitrogen cycling in the land and ocean spheres despite its vital role in limiting primary productivity. As coupled carbon-nitrogen cycling becomes the norm, a better understanding of the role of nitrogen cycling is needed. Here we develop a new framework for quantifying carbon-nitrogen feedbacks in Earth System Models and show that rising nitrogen deposition acts as a negative feedback over both land and ocean, enhancing carbon dioxide (CO<sub>2</sub>) fertilisation in a model ensemble. However, increased CO<sub>2</sub> uptake due to rising nitrogen deposition is small relative to the large reduction in CO<sub>2</sub> uptake when coupled carbon-nitrogen cycling is implemented in Earth System Models. Altogether, rising nitrogen deposition leads to only a minor increase in CO<sub>2</sub> uptake but also enhances nitrous oxide (N<sub>2</sub>O) emissions over land and ocean, contributing only marginally to mitigating climate change.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"216"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-024-01943-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Current frameworks for evaluating biogeochemical climate change feedbacks in Earth System Models lack an explicit consideration of nitrogen cycling in the land and ocean spheres despite its vital role in limiting primary productivity. As coupled carbon-nitrogen cycling becomes the norm, a better understanding of the role of nitrogen cycling is needed. Here we develop a new framework for quantifying carbon-nitrogen feedbacks in Earth System Models and show that rising nitrogen deposition acts as a negative feedback over both land and ocean, enhancing carbon dioxide (CO2) fertilisation in a model ensemble. However, increased CO2 uptake due to rising nitrogen deposition is small relative to the large reduction in CO2 uptake when coupled carbon-nitrogen cycling is implemented in Earth System Models. Altogether, rising nitrogen deposition leads to only a minor increase in CO2 uptake but also enhances nitrous oxide (N2O) emissions over land and ocean, contributing only marginally to mitigating climate change.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信