{"title":"An interpretable machine learning model for seasonal precipitation forecasting.","authors":"Enzo Pinheiro, Taha B M J Ouarda","doi":"10.1038/s43247-025-02207-2","DOIUrl":null,"url":null,"abstract":"<p><p>Seasonal climate forecasting is important for societal welfare, as it supports decision-makers in taking proactive steps to mitigate risks from adverse climate conditions or to take advantage of favorable ones. Here, we introduce TelNet, a sequence-to-sequence machine learning model for short-to-medium lead seasonal precipitation forecasting. The model takes past seasonal precipitation values and climate indices to predict an empirical precipitation distribution for every grid point of the target region for the next six overlapping seasons. TelNet has a simple encoder-decoder-head architecture, allowing the model to be trained with a limited amount of data, as is often the case in climate forecasting. Its deterministic and probabilistic performance is thoroughly evaluated and compared with state-of-the-art dynamical and deep learning models in a prominent region for seasonal forecasting studies due to its high climate predictability. The training, validation, and test sets are resampled multiple times to estimate the uncertainty associated with a small dataset. The results show that TelNet ranks among the most accurate and calibrated models across multiple initialization months and lead times, especially during the rainy season when the predictable signal is strongest. Moreover, the model allows instance- and lead-wise forecast interpretation through its variable selection weights.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"222"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928313/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02207-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Seasonal climate forecasting is important for societal welfare, as it supports decision-makers in taking proactive steps to mitigate risks from adverse climate conditions or to take advantage of favorable ones. Here, we introduce TelNet, a sequence-to-sequence machine learning model for short-to-medium lead seasonal precipitation forecasting. The model takes past seasonal precipitation values and climate indices to predict an empirical precipitation distribution for every grid point of the target region for the next six overlapping seasons. TelNet has a simple encoder-decoder-head architecture, allowing the model to be trained with a limited amount of data, as is often the case in climate forecasting. Its deterministic and probabilistic performance is thoroughly evaluated and compared with state-of-the-art dynamical and deep learning models in a prominent region for seasonal forecasting studies due to its high climate predictability. The training, validation, and test sets are resampled multiple times to estimate the uncertainty associated with a small dataset. The results show that TelNet ranks among the most accurate and calibrated models across multiple initialization months and lead times, especially during the rainy season when the predictable signal is strongest. Moreover, the model allows instance- and lead-wise forecast interpretation through its variable selection weights.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.