Leaf dry mass per unit area and leaf pigments underlying the higher stomatal conductance of deciduous species relative to evergreen species in Dendrobium.

IF 3.4 3区 生物学 Q1 Agricultural and Biological Sciences
Feng-Ping Zhang, Xiao-Di Zhao, Li-Jun Han, Han-Run Li
{"title":"Leaf dry mass per unit area and leaf pigments underlying the higher stomatal conductance of deciduous species relative to evergreen species in Dendrobium.","authors":"Feng-Ping Zhang, Xiao-Di Zhao, Li-Jun Han, Han-Run Li","doi":"10.1186/s40529-025-00457-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Leaf stomatal conductance is an important indicator of photosynthetic capacity. However, stomatal conductance is poorly quantified and rarely explored in the context of the leaf functional traits for epiphytes, particularly when it comes to herbaceous species with different leaf habits (deciduous vs. deciduous species). Here, we investigated leaf stomatal conductance, leaf dry mass per unit area, leaf thickness, stomatal density, abaxial epidermal cell size and pigment contents in 23 Dendrobium evergreen and deciduous species from a greenhouse. Our main objectives were to compare differences in all measured traits between evergreen and deciduous species, and to determine the relationships of leaf stomatal conductance with leaf functional traits and leaf pigments.</p><p><strong>Results: </strong>The results showed that the evergreen species of Dendrobium had thicker leaves and higher leaf dry mass per unit area, whereas deciduous species had higher leaf stomatal conductance and higher leaf chlorophyll contents. Leaf stomatal conductance had a negative correlation with leaf thickness, and dry mass per unit area, but a positive correlation with leaf pigment contents. There was a negative correlation between pigment contents and leaf dry mass per unit area.</p><p><strong>Conclusion: </strong>The results reveal the clear differences in leaf stomatal conductance, leaf functional traits and leaf pigments between deciduous and evergreen Dendrobium species, with the form groups showing trait values indicative of less investments in structural components and of more investments in photosynthetic carbon gain. Furthermore, leaf dry mass per unit area and leaf pigments play an important role in shaping leaf stomatal conductance.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":"66 1","pages":"11"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botanical Studies","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40529-025-00457-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Leaf stomatal conductance is an important indicator of photosynthetic capacity. However, stomatal conductance is poorly quantified and rarely explored in the context of the leaf functional traits for epiphytes, particularly when it comes to herbaceous species with different leaf habits (deciduous vs. deciduous species). Here, we investigated leaf stomatal conductance, leaf dry mass per unit area, leaf thickness, stomatal density, abaxial epidermal cell size and pigment contents in 23 Dendrobium evergreen and deciduous species from a greenhouse. Our main objectives were to compare differences in all measured traits between evergreen and deciduous species, and to determine the relationships of leaf stomatal conductance with leaf functional traits and leaf pigments.

Results: The results showed that the evergreen species of Dendrobium had thicker leaves and higher leaf dry mass per unit area, whereas deciduous species had higher leaf stomatal conductance and higher leaf chlorophyll contents. Leaf stomatal conductance had a negative correlation with leaf thickness, and dry mass per unit area, but a positive correlation with leaf pigment contents. There was a negative correlation between pigment contents and leaf dry mass per unit area.

Conclusion: The results reveal the clear differences in leaf stomatal conductance, leaf functional traits and leaf pigments between deciduous and evergreen Dendrobium species, with the form groups showing trait values indicative of less investments in structural components and of more investments in photosynthetic carbon gain. Furthermore, leaf dry mass per unit area and leaf pigments play an important role in shaping leaf stomatal conductance.

石斛中落叶树种相对于常绿树种气孔导度较高的单位面积叶片干质量和叶片色素。
背景:叶片气孔导度是叶片光合能力的重要指标。然而,在附生植物叶片功能性状的背景下,气孔导度的量化很差,很少被探索,特别是当涉及到具有不同叶片习性的草本物种(落叶种与落叶种)时。对某温室23种常绿和落叶石斛的叶片气孔导度、叶片单位面积干质量、叶片厚度、气孔密度、背面表皮细胞大小和色素含量进行了研究。我们的主要目的是比较常绿和落叶树种间所有测量性状的差异,并确定叶片气孔导度与叶片功能性状和叶片色素的关系。结果:常绿种类石斛的叶片较厚,单位面积干质量较高,而落叶种类的叶片气孔导度较高,叶片叶绿素含量较高。叶片气孔导度与叶片厚度、单位面积干质量呈负相关,与叶片色素含量呈正相关。色素含量与单位面积叶干质量呈负相关。结论:落叶石斛和常绿石斛在叶片气孔导度、叶片功能性状和叶片色素方面存在明显差异,形态类群的性状值表明结构成分投入较少,光合碳收益投入较多。此外,叶片单位面积干质量和叶片色素对叶片气孔导度的形成也起重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Botanical Studies
Botanical Studies 生物-植物科学
CiteScore
5.50
自引率
2.90%
发文量
32
审稿时长
2.4 months
期刊介绍: Botanical Studies is an open access journal that encompasses all aspects of botany, including but not limited to taxonomy, morphology, development, genetics, evolution, reproduction, systematics, and biodiversity of all plant groups, algae, and fungi. The journal is affiliated with the Institute of Plant and Microbial Biology, Academia Sinica, Taiwan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信