Anticancer, antioxidant and antibacterial potential of L-Glutaminase (Streptomyces roseolus strain ZKB1) capped silver and zinc oxide nanoparticles and its molecular characterization.

IF 4.3 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zabin K Bagewadi, Gouri H Illanad, T M Yunus Khan, Shaik Mohamed Shamsudeen, Sikandar I Mulla
{"title":"Anticancer, antioxidant and antibacterial potential of L-Glutaminase (Streptomyces roseolus strain ZKB1) capped silver and zinc oxide nanoparticles and its molecular characterization.","authors":"Zabin K Bagewadi, Gouri H Illanad, T M Yunus Khan, Shaik Mohamed Shamsudeen, Sikandar I Mulla","doi":"10.1186/s40643-025-00857-w","DOIUrl":null,"url":null,"abstract":"<p><p>The current investigation reports anti-cancer, antioxidant and antibacterial potential of L-Glutaminase (Streptomyces roseolus strain ZKB1) and L-Glutaminase capped nanoparticles. The highest L-Glutaminase production of 9.57 U/mL was achieved on the 4th day of fermentation when L-Glutamine was used as the sole carbon and nitrogen source. Enhanced recycling stability was observed after 6 cycles using L-Glutaminase immobilized in 3% agar and agarose matrices. Free and immobilized L- Glutaminase showed K<sub>m</sub> of 13.89 ± 0.8 and 7.13 ± 0.3 mM and V<sub>max</sub> of 18.40 ± 1.5 and 24.21 ± 1.7 U/mg respectively. L- Glutaminase capped silver (AgNP) and zinc oxide (ZnONP) nanoparticles were synthesized and structurally characterized using UV visible spectroscopy, FTIR, SEM-EDS, XRD and AFM. L- Glutaminase capped AgNP and ZnONP exhibited good thermal stability with five and three stages weight loss pattern respectively based on TGA. L-Glutaminase capped AgNP exhibited highest inhibitory activity against B. subtilis (45 <math><mo>±</mo></math> 0.5 mm) and E. coli (33 <math><mo>±</mo></math> 0.8 mm) whereas, L-Glutaminase capped ZnONP demonstrated highest inhibition against E. coli (30 <math><mo>±</mo></math> 0.3 mm) and B. cereus (25 <math><mo>±</mo></math> 0.5 mm). Increased nanoparticles concentration exhibited increased inhibitory potential as compared to wild L-Glutaminase and lowest MIC of 0.09 µg/mL was exhibited against B. cereus. L-Glutaminase capped nanoparticles demonstrated significant antioxidant properties through in-vitro ABTS and DPPH radical scavenging assays in a dosage-dependent manner. L-Glutaminase and capped AgNP and ZnONP, demonstrated pronounced cell cytotoxicity against MCF-7 cancerous cell line with 57.17 µg/mL, 8.13 µg/mL and 28.31 µg/mL IC<sub>50</sub> values respectively, suggesting promising properties as anticancer agents in enzyme-based therapy. The results reveal promising biological activities with potential applications in healthcare sector.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"23"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00857-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The current investigation reports anti-cancer, antioxidant and antibacterial potential of L-Glutaminase (Streptomyces roseolus strain ZKB1) and L-Glutaminase capped nanoparticles. The highest L-Glutaminase production of 9.57 U/mL was achieved on the 4th day of fermentation when L-Glutamine was used as the sole carbon and nitrogen source. Enhanced recycling stability was observed after 6 cycles using L-Glutaminase immobilized in 3% agar and agarose matrices. Free and immobilized L- Glutaminase showed Km of 13.89 ± 0.8 and 7.13 ± 0.3 mM and Vmax of 18.40 ± 1.5 and 24.21 ± 1.7 U/mg respectively. L- Glutaminase capped silver (AgNP) and zinc oxide (ZnONP) nanoparticles were synthesized and structurally characterized using UV visible spectroscopy, FTIR, SEM-EDS, XRD and AFM. L- Glutaminase capped AgNP and ZnONP exhibited good thermal stability with five and three stages weight loss pattern respectively based on TGA. L-Glutaminase capped AgNP exhibited highest inhibitory activity against B. subtilis (45 ± 0.5 mm) and E. coli (33 ± 0.8 mm) whereas, L-Glutaminase capped ZnONP demonstrated highest inhibition against E. coli (30 ± 0.3 mm) and B. cereus (25 ± 0.5 mm). Increased nanoparticles concentration exhibited increased inhibitory potential as compared to wild L-Glutaminase and lowest MIC of 0.09 µg/mL was exhibited against B. cereus. L-Glutaminase capped nanoparticles demonstrated significant antioxidant properties through in-vitro ABTS and DPPH radical scavenging assays in a dosage-dependent manner. L-Glutaminase and capped AgNP and ZnONP, demonstrated pronounced cell cytotoxicity against MCF-7 cancerous cell line with 57.17 µg/mL, 8.13 µg/mL and 28.31 µg/mL IC50 values respectively, suggesting promising properties as anticancer agents in enzyme-based therapy. The results reveal promising biological activities with potential applications in healthcare sector.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresources and Bioprocessing
Bioresources and Bioprocessing BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
8.70%
发文量
118
审稿时长
13 weeks
期刊介绍: Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信