I K Peter-Ajuzie, C N Chinyere, A B Olorunfemi, L Z Kpasham, O O Opaleye, A S Bakarey, O B Daodu, A N Happi, O A Olowe, C T Happi, D O Oluwayelu, O Ojurongbe, James O Olopade
{"title":"Repeated detection of SARS-CoV-2 in pet dogs in Ibadan, Oyo State, Nigeria: a cause for vigilance.","authors":"I K Peter-Ajuzie, C N Chinyere, A B Olorunfemi, L Z Kpasham, O O Opaleye, A S Bakarey, O B Daodu, A N Happi, O A Olowe, C T Happi, D O Oluwayelu, O Ojurongbe, James O Olopade","doi":"10.1186/s12917-025-04647-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The COVID-19 pandemic of 2020 was unprecedented in its devastating impact on the global economy, public health, travel and tourism, education, sports, religion, and social lives. Studies conducted thereafter on the disease and its causative agent, SARS-CoV-2, have highlighted the need for effective and sustainable public health interventions.</p><p><strong>Methods: </strong>This study investigated the prevalence and endemicity of SARS-CoV-2 infection in pet dogs using immunochromatography assay (IC) and quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) of their blood, rectal swabs, and nasal swabs in Ibadan, Oyo State, Nigeria between 2022 and 2024.</p><p><strong>Key findings: </strong>For the IC, positivity rates of 11.7% (23/197), 85.7% (6/7), and 100% (3/3) were recorded for 2022, 2023 and 2024 while for the RT-qPCR, positivity rates of 37.9% (11/29), 33.3% (2/6) and 100% (3/3) were recorded for 2022, 2023 and 2024. This repeated detection of SARS-CoV-2 in three of the dogs tested over the three-year period suggests continuous shedding of the virus by these animals and indicates endemicity of the virus in the study area. Findings highlight the urgent need for optimized SARS-CoV-2 rapid diagnostic tools tailored for veterinary applications to ensure rapid and reliable detection of the virus, especially in resource-constrained settings.</p><p><strong>Conclusion: </strong>Considering the zoonotic nature of SARS-CoV-2 and its potential for mutation into more virulent strains that can be transmissible to humans, the findings of this study have significant implications for public health and implementation of One Health strategies by policymakers, and highlight the need for robust SARS-CoV-2 surveillance in domestic animals to mitigate potential zoonotic risks.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":"21 1","pages":"196"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929258/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-025-04647-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The COVID-19 pandemic of 2020 was unprecedented in its devastating impact on the global economy, public health, travel and tourism, education, sports, religion, and social lives. Studies conducted thereafter on the disease and its causative agent, SARS-CoV-2, have highlighted the need for effective and sustainable public health interventions.
Methods: This study investigated the prevalence and endemicity of SARS-CoV-2 infection in pet dogs using immunochromatography assay (IC) and quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) of their blood, rectal swabs, and nasal swabs in Ibadan, Oyo State, Nigeria between 2022 and 2024.
Key findings: For the IC, positivity rates of 11.7% (23/197), 85.7% (6/7), and 100% (3/3) were recorded for 2022, 2023 and 2024 while for the RT-qPCR, positivity rates of 37.9% (11/29), 33.3% (2/6) and 100% (3/3) were recorded for 2022, 2023 and 2024. This repeated detection of SARS-CoV-2 in three of the dogs tested over the three-year period suggests continuous shedding of the virus by these animals and indicates endemicity of the virus in the study area. Findings highlight the urgent need for optimized SARS-CoV-2 rapid diagnostic tools tailored for veterinary applications to ensure rapid and reliable detection of the virus, especially in resource-constrained settings.
Conclusion: Considering the zoonotic nature of SARS-CoV-2 and its potential for mutation into more virulent strains that can be transmissible to humans, the findings of this study have significant implications for public health and implementation of One Health strategies by policymakers, and highlight the need for robust SARS-CoV-2 surveillance in domestic animals to mitigate potential zoonotic risks.
期刊介绍:
BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.