Soil carbon stability regulate carbon dynamics following large-scale afforestation.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Qi Zhang, Hanyu Liu, Jiale He, Xinyu Cha, Shuohong Zhang, Yuqing Zhao, Yingyi Liu, Guangxin Ren, Xiaojiao Wang, Gaihe Yang, Yongzhong Feng, Chengjie Ren, Xinhui Han
{"title":"Soil carbon stability regulate carbon dynamics following large-scale afforestation.","authors":"Qi Zhang, Hanyu Liu, Jiale He, Xinyu Cha, Shuohong Zhang, Yuqing Zhao, Yingyi Liu, Guangxin Ren, Xiaojiao Wang, Gaihe Yang, Yongzhong Feng, Chengjie Ren, Xinhui Han","doi":"10.1016/j.jenvman.2025.125032","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale afforestation is considered an effective measure to mitigate climate change. However, due to the differences in the properties of soil organic carbon (SOC), the dynamic response of SOC to large-scale afforestation remained unclear. Therefore, we conducted paired sampling (farmland and afforestation) in plantation areas across northern China to evaluate the relationship between SOC stability and SOC increments (ΔSOC) resulting from afforestation. Our findings indicated that SOC-unstable soil supported greater carbon increments through afforestation, but at the expense of reduced SOC stability after afforestation. Additionally, we observed that this relationship exhibited geographical characteristics, with SOC-unstable soil demonstrating a stronger capacity to enhance ΔSOC at higher latitudes, particularly in the topsoil. This is primarily attributed to the fact that higher latitudes and colder climates enhance the contribution of particulate organic carbon to ΔSOC and weaken the regulatory effect of SOC chemical composition (carboxyl and aromatic carbon) on SOC stability after afforestation. These findings underscore the importance of incorporating pre-afforestation SOC stability to accurately predict soil carbon-afforestation feedback.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"380 ","pages":"125032"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.125032","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale afforestation is considered an effective measure to mitigate climate change. However, due to the differences in the properties of soil organic carbon (SOC), the dynamic response of SOC to large-scale afforestation remained unclear. Therefore, we conducted paired sampling (farmland and afforestation) in plantation areas across northern China to evaluate the relationship between SOC stability and SOC increments (ΔSOC) resulting from afforestation. Our findings indicated that SOC-unstable soil supported greater carbon increments through afforestation, but at the expense of reduced SOC stability after afforestation. Additionally, we observed that this relationship exhibited geographical characteristics, with SOC-unstable soil demonstrating a stronger capacity to enhance ΔSOC at higher latitudes, particularly in the topsoil. This is primarily attributed to the fact that higher latitudes and colder climates enhance the contribution of particulate organic carbon to ΔSOC and weaken the regulatory effect of SOC chemical composition (carboxyl and aromatic carbon) on SOC stability after afforestation. These findings underscore the importance of incorporating pre-afforestation SOC stability to accurately predict soil carbon-afforestation feedback.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信