Stacking potato NLR genes activates a calcium-dependent protein kinase and confers broad-spectrum disease resistance to late blight.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaoqiang Zhao, Fan Zhang, Xiaoqing Chen, Chongyuan Zhang, Haoyi Zhang, Tian Wang, Jinzhe Zhang, Cheng He, Shuo Wang, Xinjie Zhang, Xi Meng, Vladimir Nekrasov, Liang Kong, Suomeng Dong
{"title":"Stacking potato NLR genes activates a calcium-dependent protein kinase and confers broad-spectrum disease resistance to late blight.","authors":"Xiaoqiang Zhao, Fan Zhang, Xiaoqing Chen, Chongyuan Zhang, Haoyi Zhang, Tian Wang, Jinzhe Zhang, Cheng He, Shuo Wang, Xinjie Zhang, Xi Meng, Vladimir Nekrasov, Liang Kong, Suomeng Dong","doi":"10.1111/jipb.13892","DOIUrl":null,"url":null,"abstract":"<p><p>Late blight, caused by the oomycete plant pathogen Phytophthora infestans, is a destructive disease that leads to significant yield loss in potatoes and tomatoes. The introgression of disease resistance (R) genes, which encode nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs), into cultivated potatoes, is highly effective in controlling late blight. Here, we generated transgenic 2R and 3R potato lines by stacking R genes Rpi-blb2/Rpi-vnt1.1 and Rpi-vnt1.1/RB/R8, respectively, in the susceptible cv. Desiree background. The resulting 2R and 3R transgenic potato plants showed resistance to highly virulent P. infestans field isolates. We hypothesized that stacking R genes either resulted in up-regulation of a broader range of immune-related genes, or, more importantly, increase in the fold change of gene expression. To test our hypotheses, we performed transcriptome analysis and identified a subset of core immune-related genes that are induced in response to P. infestans in transgenic lines carrying single R genes versus lines carrying stacks of multiple R genes. In our analysis, stacking R genes resulted not only in the induction of a broader range of defense-associated genes but also a global increase in gene expression fold change, caused by the pathogen. We further demonstrated that the calcium-dependent protein kinase 16 (StCDPK16) gene significantly contributed to resistance to a virulent P. infestans strain, in the R gene background, in a kinase activity-dependent manner. Thus, our data suggest that stacking the R genes enhances late blight resistance through modulating the expression of a broader range of defense-related genes and highlights CDPK16 as a novel player in potato R gene-mediated resistance.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13892","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Late blight, caused by the oomycete plant pathogen Phytophthora infestans, is a destructive disease that leads to significant yield loss in potatoes and tomatoes. The introgression of disease resistance (R) genes, which encode nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs), into cultivated potatoes, is highly effective in controlling late blight. Here, we generated transgenic 2R and 3R potato lines by stacking R genes Rpi-blb2/Rpi-vnt1.1 and Rpi-vnt1.1/RB/R8, respectively, in the susceptible cv. Desiree background. The resulting 2R and 3R transgenic potato plants showed resistance to highly virulent P. infestans field isolates. We hypothesized that stacking R genes either resulted in up-regulation of a broader range of immune-related genes, or, more importantly, increase in the fold change of gene expression. To test our hypotheses, we performed transcriptome analysis and identified a subset of core immune-related genes that are induced in response to P. infestans in transgenic lines carrying single R genes versus lines carrying stacks of multiple R genes. In our analysis, stacking R genes resulted not only in the induction of a broader range of defense-associated genes but also a global increase in gene expression fold change, caused by the pathogen. We further demonstrated that the calcium-dependent protein kinase 16 (StCDPK16) gene significantly contributed to resistance to a virulent P. infestans strain, in the R gene background, in a kinase activity-dependent manner. Thus, our data suggest that stacking the R genes enhances late blight resistance through modulating the expression of a broader range of defense-related genes and highlights CDPK16 as a novel player in potato R gene-mediated resistance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信