{"title":"Role of Testosterone Signaling in Microglia: A Potential Role for Sex-Related Differences in Alzheimer's Disease.","authors":"Haiyan Du, Akiko Mizokami, Junjun Ni, Simeng Zhang, Yosuke Yamawaki, Tomomi Sano, Eijiro Jimi, Isei Tanida, Takashi Kanematsu","doi":"10.1002/advs.202413375","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is less prevalent in men than in women, although mechanisms remain unclear. Microglia degrade aggregated amyloid β (Aβ) through the lysosomal system, including autophagy. G protein-coupled receptor family C group 6 member A (GPRC6A), predominantly expressed in mouse microglial MG6 cells, is a primary mediator of testosterone signaling. This study examines testosterone's role in modulating Aβ-induced autophagy in microglia. Testosterone promotes Aβ-induced autophagy leading to Aβ clearance in MG6 cells by suppressing extracellular signal-regulated kinase (ERK) phosphorylation and subsequently inhibiting mammalian target of rapamycin (mTOR) activation, which is abrogated by shRNA knockdown of GPRC6A. In in vivo experiments with male 5xFAD AD model mice, Aβ clearance activity is associated with autophagy in microglia and is reduced by orchiectomy, but restored by testosterone supplementation. ERK phosphorylation in the brains of male AD model mice is upregulated by orchiectomy. Therefore, testosterone is involved in autophagy-mediated Aβ clearance in microglia. Aβ accumulation in human brain samples from patients with AD is significantly lower in men than in women, with less pronounced colocalization of Aβ with p62 aggregates, suggesting enhanced autophagic activity in men. In conclusion, testosterone enhances Aβ-induced autophagy in microglia, possibly contributing to lower susceptibility to AD in men.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413375"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413375","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is less prevalent in men than in women, although mechanisms remain unclear. Microglia degrade aggregated amyloid β (Aβ) through the lysosomal system, including autophagy. G protein-coupled receptor family C group 6 member A (GPRC6A), predominantly expressed in mouse microglial MG6 cells, is a primary mediator of testosterone signaling. This study examines testosterone's role in modulating Aβ-induced autophagy in microglia. Testosterone promotes Aβ-induced autophagy leading to Aβ clearance in MG6 cells by suppressing extracellular signal-regulated kinase (ERK) phosphorylation and subsequently inhibiting mammalian target of rapamycin (mTOR) activation, which is abrogated by shRNA knockdown of GPRC6A. In in vivo experiments with male 5xFAD AD model mice, Aβ clearance activity is associated with autophagy in microglia and is reduced by orchiectomy, but restored by testosterone supplementation. ERK phosphorylation in the brains of male AD model mice is upregulated by orchiectomy. Therefore, testosterone is involved in autophagy-mediated Aβ clearance in microglia. Aβ accumulation in human brain samples from patients with AD is significantly lower in men than in women, with less pronounced colocalization of Aβ with p62 aggregates, suggesting enhanced autophagic activity in men. In conclusion, testosterone enhances Aβ-induced autophagy in microglia, possibly contributing to lower susceptibility to AD in men.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.