Effect of CO2 curing on the long-term performance of oriented cement-bonded boards after wet-dry cycles

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Matheus R. Cabral, Erika Y. Nakanishi, Sérgio F. Santos, Juliano Fiorelli
{"title":"Effect of CO2 curing on the long-term performance of oriented cement-bonded boards after wet-dry cycles","authors":"Matheus R. Cabral,&nbsp;Erika Y. Nakanishi,&nbsp;Sérgio F. Santos,&nbsp;Juliano Fiorelli","doi":"10.1007/s11356-025-36277-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the influence of CO<sub>2</sub> curing on oriented cement-bonded boards’ long-term performance. The boards used hardwood (<i>Eucalyptus</i> spp.) and softwood (<i>Pinus</i> spp.) strands. After being manufactured and aged for 24 h, the boards undertook two curing processes: control curing and CO<sub>2</sub> curing for 12 h, followed by saturation until the 28th day. Subsequently, the boards underwent rigorous testing, enduring 100 wetting and drying cycles. The study assessed hardwood and softwood boards’ physical and mechanical properties according to international standards. Thermal and mineralogical analyses showed that CO<sub>2</sub> curing reduced calcium hydroxide content while increasing the boards’ calcium carbonate content. The results indicated that CO<sub>2</sub> curing significantly improved the boards’ physical and mechanical properties. Even after undergoing 100 wetting and drying cycles, the CO<sub>2</sub>-cured boards met ISO 8335 recommendations for cement boards. Specifically, CO<sub>2</sub> curing increased the modulus of rupture by 119% for hardwood and 72% for softwood boards, while the modulus of elasticity values exhibited a substantial rise of 179% for hardwood and 121% for softwood boards. These findings demonstrate CO<sub>2</sub> curing’s potential to enhance the durability of oriented cement-bonded boards.\n</p></div>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":"32 14","pages":"9271 - 9279"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11356-025-36277-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the influence of CO2 curing on oriented cement-bonded boards’ long-term performance. The boards used hardwood (Eucalyptus spp.) and softwood (Pinus spp.) strands. After being manufactured and aged for 24 h, the boards undertook two curing processes: control curing and CO2 curing for 12 h, followed by saturation until the 28th day. Subsequently, the boards underwent rigorous testing, enduring 100 wetting and drying cycles. The study assessed hardwood and softwood boards’ physical and mechanical properties according to international standards. Thermal and mineralogical analyses showed that CO2 curing reduced calcium hydroxide content while increasing the boards’ calcium carbonate content. The results indicated that CO2 curing significantly improved the boards’ physical and mechanical properties. Even after undergoing 100 wetting and drying cycles, the CO2-cured boards met ISO 8335 recommendations for cement boards. Specifically, CO2 curing increased the modulus of rupture by 119% for hardwood and 72% for softwood boards, while the modulus of elasticity values exhibited a substantial rise of 179% for hardwood and 121% for softwood boards. These findings demonstrate CO2 curing’s potential to enhance the durability of oriented cement-bonded boards.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信