Nutrients and metal(loid)s in surface sediments of the Chishui River: A DGT-based assessment of the last natural tributary of the upper Yangtze River (China)

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Wei Xia , Tian-Xin Zhang , Xue Li , Yanpeng Gao , Richard W. Jordan , Hong Su , Shi-Jun Jiang , Yang-Guang Gu
{"title":"Nutrients and metal(loid)s in surface sediments of the Chishui River: A DGT-based assessment of the last natural tributary of the upper Yangtze River (China)","authors":"Wei Xia ,&nbsp;Tian-Xin Zhang ,&nbsp;Xue Li ,&nbsp;Yanpeng Gao ,&nbsp;Richard W. Jordan ,&nbsp;Hong Su ,&nbsp;Shi-Jun Jiang ,&nbsp;Yang-Guang Gu","doi":"10.1016/j.envres.2025.121455","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the distribution and probabilistic ecotoxicological risk assessment of nutrients and metal(loid)s in the Chishui River, the last natural tributary of the upper Yangtze River, which plays a crucial role in maintaining regional biodiversity and water quality. Understanding the impact of contaminants in this ecologically significant river is essential for effective environmental management. Sediment samples were analyzed using diffusive gradients in thin films (DGT) to measure labile concentrations of nutrients and metal(loid)s, revealing significant spatial variability. Concentrations of PO<sub>4</sub>-P, NH<sub>4</sub>-N, NO<sub>3</sub>-N, and metal(loid)s such as Mn, Fe, Cu, and Zn varied notably across sampling sites. Risk quotient (RQ) analysis identified Mn as posing the highest ecological risk, followed by Cu and Fe. A combined probabilistic risk assessment using the SPI (Species Sensitivity Distribution–Probabilistic Risk Assessment–Inclusion-Exclusion Principle) model indicated a 32.46 % probability of toxic effects from nutrient and metal(loid) mixtures on aquatic organisms. This study underscores the effectiveness of DGT technology in assessing bioavailable contaminants and highlights the need for targeted risk management strategies to mitigate ecological impacts in the Chishui River.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"275 ","pages":"Article 121455"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125007066","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the distribution and probabilistic ecotoxicological risk assessment of nutrients and metal(loid)s in the Chishui River, the last natural tributary of the upper Yangtze River, which plays a crucial role in maintaining regional biodiversity and water quality. Understanding the impact of contaminants in this ecologically significant river is essential for effective environmental management. Sediment samples were analyzed using diffusive gradients in thin films (DGT) to measure labile concentrations of nutrients and metal(loid)s, revealing significant spatial variability. Concentrations of PO4-P, NH4-N, NO3-N, and metal(loid)s such as Mn, Fe, Cu, and Zn varied notably across sampling sites. Risk quotient (RQ) analysis identified Mn as posing the highest ecological risk, followed by Cu and Fe. A combined probabilistic risk assessment using the SPI (Species Sensitivity Distribution–Probabilistic Risk Assessment–Inclusion-Exclusion Principle) model indicated a 32.46 % probability of toxic effects from nutrient and metal(loid) mixtures on aquatic organisms. This study underscores the effectiveness of DGT technology in assessing bioavailable contaminants and highlights the need for targeted risk management strategies to mitigate ecological impacts in the Chishui River.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信