Shuai Wang, Xiaoliang Song, Hui Gao, Yi Zhang, Xin Zhou, Fengrong Wang
{"title":"6-Gingerol Inhibits Ferroptosis in Endothelial Cells in Atherosclerosis by Activating the NRF2/HO-1 Pathway.","authors":"Shuai Wang, Xiaoliang Song, Hui Gao, Yi Zhang, Xin Zhou, Fengrong Wang","doi":"10.1007/s12010-025-05214-3","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting endothelial cell ferroptosis is a potential approach for the treatment of atherosclerosis (AS). 6-Gingerol (6-Gin) is an active substance in ginger that is beneficial for improving AS. We conducted this study to explore whether 6-Gin mediated AS progression by regulating ferroptosis of endothelial cells. ApoE-/- mice were fed a high-fat diet to establish AS mouse model. Additionally, oxidized low-density lipoprotein (ox-LDL) was used to treat human umbilical vein endothelial cells (HUVECs) to generate injured cell model. Ferroptosis was evaluated by propidium iodide staining assay, western blot, and detecting iron, glutathione, malonaldehyde, and reactive oxygen species levels. The results showed that ox-LDL inhibited the proliferation and induced inflammation and ferroptosis of HUVECs, which was reversed by 6-Gin treatment. Moreover, 6-Gin upregulated HO-1 and NQO1 levels and promoted nuclear translocation of NRF2 in ox-LDL-treated HUVECs. ATRA, an NRF2 inhibitor, abrogated the promotion of proliferation and the inhibition of inflammation and ferroptosis induced by 6-Gin. Additionally, 6-Gin alleviated AS and suppressed ferroptosis in vivo. In conclusion, 6-Gin inhibited endothelial cell ferroptosis by inactivating the NRF2/HO-1 pathway, thereby improving abnormal lipid metabolism in AS mice. These findings suggest that 6-Gin may be a novel therapeutic drug for AS.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05214-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Targeting endothelial cell ferroptosis is a potential approach for the treatment of atherosclerosis (AS). 6-Gingerol (6-Gin) is an active substance in ginger that is beneficial for improving AS. We conducted this study to explore whether 6-Gin mediated AS progression by regulating ferroptosis of endothelial cells. ApoE-/- mice were fed a high-fat diet to establish AS mouse model. Additionally, oxidized low-density lipoprotein (ox-LDL) was used to treat human umbilical vein endothelial cells (HUVECs) to generate injured cell model. Ferroptosis was evaluated by propidium iodide staining assay, western blot, and detecting iron, glutathione, malonaldehyde, and reactive oxygen species levels. The results showed that ox-LDL inhibited the proliferation and induced inflammation and ferroptosis of HUVECs, which was reversed by 6-Gin treatment. Moreover, 6-Gin upregulated HO-1 and NQO1 levels and promoted nuclear translocation of NRF2 in ox-LDL-treated HUVECs. ATRA, an NRF2 inhibitor, abrogated the promotion of proliferation and the inhibition of inflammation and ferroptosis induced by 6-Gin. Additionally, 6-Gin alleviated AS and suppressed ferroptosis in vivo. In conclusion, 6-Gin inhibited endothelial cell ferroptosis by inactivating the NRF2/HO-1 pathway, thereby improving abnormal lipid metabolism in AS mice. These findings suggest that 6-Gin may be a novel therapeutic drug for AS.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.