External Magnetic Field Enhances Biomass Electrooxidation.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-03-23 DOI:10.1002/cssc.202402715
Bin Zhu, Yang Zhong, Qiuge Wang, Jian Zhang, Chunlin Chen
{"title":"External Magnetic Field Enhances Biomass Electrooxidation.","authors":"Bin Zhu, Yang Zhong, Qiuge Wang, Jian Zhang, Chunlin Chen","doi":"10.1002/cssc.202402715","DOIUrl":null,"url":null,"abstract":"<p><p>External fields in regulating catalyst structure and tailoring catalytic performance have garnered significant attention from researchers. In this study, an external magnetic field was introduced into biomass conversion and employed as an effective means to accelerate electrocatalytic oxidation. An ox-NiCoP electrocatalyst was fabricated as an electrocatalyst for the oxidation of 2,5-bis(hydroxymethyl)furan (BHMF) to 2,5-furandicarboxylic acid (FDCA). Upon application of a 0.48 T magnetic field, the conversion of BHMF and the yield of FDCA were increased by 27.8 % and 27.5 %, respectively. The reaction time was shortened by 3.8 h compared to the reaction without a magnetic field. Kinetic analysis revealed that the magnetic field significantly reduced the charge transfer resistance and accelerated the kinetics of the BHMF oxidation reaction (BHMFOR), achieving a maximum reaction rate constant (k) of 2.53 h<sup>-1</sup>. The enhancement mechanism was attributed to the magnetic field-induced convection at the electrode surface via the Lorentz force, which improved BHMF diffusion between the catalytic interface and the electrolyte. This work highlights the promotive effect of an external magnetic field in the electrocatalytic conversion of organic molecules.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402715"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402715","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

External fields in regulating catalyst structure and tailoring catalytic performance have garnered significant attention from researchers. In this study, an external magnetic field was introduced into biomass conversion and employed as an effective means to accelerate electrocatalytic oxidation. An ox-NiCoP electrocatalyst was fabricated as an electrocatalyst for the oxidation of 2,5-bis(hydroxymethyl)furan (BHMF) to 2,5-furandicarboxylic acid (FDCA). Upon application of a 0.48 T magnetic field, the conversion of BHMF and the yield of FDCA were increased by 27.8 % and 27.5 %, respectively. The reaction time was shortened by 3.8 h compared to the reaction without a magnetic field. Kinetic analysis revealed that the magnetic field significantly reduced the charge transfer resistance and accelerated the kinetics of the BHMF oxidation reaction (BHMFOR), achieving a maximum reaction rate constant (k) of 2.53 h-1. The enhancement mechanism was attributed to the magnetic field-induced convection at the electrode surface via the Lorentz force, which improved BHMF diffusion between the catalytic interface and the electrolyte. This work highlights the promotive effect of an external magnetic field in the electrocatalytic conversion of organic molecules.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信