{"title":"Atmospheric Microplastic Pollution in Textile Industrial Areas: Source, Composition, and Health Risk Assessment.","authors":"Riajul Haq Tanjil, Md Safiqul Islam, Zubayer Islam, Shatabdi Roy, Samiha Nahian, Abdus Salam","doi":"10.1007/s00128-025-04021-0","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics (MPs) have been increasingly recognized as a pervasive environmental pollutant, with their presence extending to the atmosphere in urban, suburban, and even remote locations. Despite this, the precise sources of atmospheric microplastics remain elusive. Our study focuses on elucidating the contribution of textile industries to atmospheric microplastic pollution by investigating the atmospheric fallout within and around textile industrial areas. Samples of suspended MPs were collected over seven days from indoor and outdoor locations in six textile industries at Dhaka city, Bangladesh. Through examination using fluorescent microscopy and Fourier transform infrared (FTIR) spectroscopy, we identified transparent and black microplastics, predominantly synthetic textile fibres with lengths ranging from 20 to 180 μm. Chemical analysis revealed polymers such as polyester, nylon, regenerated cellulose, and natural fibres among the observed microplastics. Deposition rates inside the textile factory ranged from 109.0 × 10<sup>3</sup> to 245.3 × 10<sup>3</sup> MPs/m<sup>2</sup>/day, while those outside ranged from 19.3 × 10<sup>3</sup> to 72.7 × 10<sup>3</sup> MPs/m<sup>2</sup>/day, indicating a significant contribution of textile operations to atmospheric microplastic contamination. Furthermore, we calculated the exposure of textile workers to microplastics through inhalation and ingestion, with average rates of 8.7 ± 4.3 mg/kg-Bw/year and 97.9 ± 17.5 mg/kg-Bw/year, respectively. These findings emphasize the substantial health risks faced by textile workers due to microplastic exposure. In conclusion, our study provides compelling evidence implicating the textile factory as a noteworthy source of atmospheric microplastic pollution. It is crucial to address this issue in order to reduce environmental contamination and protect the health of those employed in textile production plants.</p>","PeriodicalId":501,"journal":{"name":"Bulletin of Environmental Contamination and Toxicology","volume":"114 4","pages":"51"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00128-025-04021-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) have been increasingly recognized as a pervasive environmental pollutant, with their presence extending to the atmosphere in urban, suburban, and even remote locations. Despite this, the precise sources of atmospheric microplastics remain elusive. Our study focuses on elucidating the contribution of textile industries to atmospheric microplastic pollution by investigating the atmospheric fallout within and around textile industrial areas. Samples of suspended MPs were collected over seven days from indoor and outdoor locations in six textile industries at Dhaka city, Bangladesh. Through examination using fluorescent microscopy and Fourier transform infrared (FTIR) spectroscopy, we identified transparent and black microplastics, predominantly synthetic textile fibres with lengths ranging from 20 to 180 μm. Chemical analysis revealed polymers such as polyester, nylon, regenerated cellulose, and natural fibres among the observed microplastics. Deposition rates inside the textile factory ranged from 109.0 × 103 to 245.3 × 103 MPs/m2/day, while those outside ranged from 19.3 × 103 to 72.7 × 103 MPs/m2/day, indicating a significant contribution of textile operations to atmospheric microplastic contamination. Furthermore, we calculated the exposure of textile workers to microplastics through inhalation and ingestion, with average rates of 8.7 ± 4.3 mg/kg-Bw/year and 97.9 ± 17.5 mg/kg-Bw/year, respectively. These findings emphasize the substantial health risks faced by textile workers due to microplastic exposure. In conclusion, our study provides compelling evidence implicating the textile factory as a noteworthy source of atmospheric microplastic pollution. It is crucial to address this issue in order to reduce environmental contamination and protect the health of those employed in textile production plants.
期刊介绍:
The Bulletin of Environmental Contamination and Toxicology(BECT) is a peer-reviewed journal that offers rapid review and publication. Accepted submissions will be presented as clear, concise reports of current research for a readership concerned with environmental contamination and toxicology. Scientific quality and clarity are paramount.