Efficient production of the high-intensity natural sweetener siamenoside I by the exo-1,3-beta glucanase (Exo15) from Meyerozyma guilliermondii LHGNSJ-VS01.
IF 2.6 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Efficient production of the high-intensity natural sweetener siamenoside I by the exo-1,3-beta glucanase (Exo15) from <i>Meyerozyma guilliermondii</i> LHGNSJ-VS01.","authors":"Hongjiang Wang, Haifeng Xie, Ailing Zhong, Qilin Xie","doi":"10.1007/s13205-025-04260-2","DOIUrl":null,"url":null,"abstract":"<p><p>The scarcity of siamenoside I (SI) hindered its widespread application. Addressing this challenge, we devised an innovative biocatalytic strategy and biological solution for large-scale SI production. Endo 15, an endophyte from <i>Siraitia grosvenorii</i>, exhibited excellent proficiency in SI synthesis, achieving a remarkable 50.65% SI abundance. By harnessing the extracellular protein of Endo 15 (EP), we further escalated SI abundance to 83.59 ± 2.5%, accompanied by full substrate conversion. Delving into the underlying mechanisms, we identified Exo15, a distinct functional protein derived from EP, displaying merely 48.88% amino acid similarity to the yeast exo-1,3-beta glucanase (Exg1). Successfully overexpressing Exo15 in <i>E. coli</i>, we confirmed its functionality in line with EP. Exo15 exhibited exceptional catalytic prowess, efficiently hydrolyzing mogroside V into the high-potency sweetener SI, with unparalleled activity and specificity. Our groundbreaking approach yielded an impressive SI titer of 54 g/L, coupled with an average conversion rate of 2.5 g/L per hour. These outstanding outcomes underscore the immense potential of Exo15 in cost-effective industrial production of the premium natural sweetener, siamenoside I, paving the way for its widespread adoption.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-025-04260-2.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 4","pages":"94"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926301/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-025-04260-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The scarcity of siamenoside I (SI) hindered its widespread application. Addressing this challenge, we devised an innovative biocatalytic strategy and biological solution for large-scale SI production. Endo 15, an endophyte from Siraitia grosvenorii, exhibited excellent proficiency in SI synthesis, achieving a remarkable 50.65% SI abundance. By harnessing the extracellular protein of Endo 15 (EP), we further escalated SI abundance to 83.59 ± 2.5%, accompanied by full substrate conversion. Delving into the underlying mechanisms, we identified Exo15, a distinct functional protein derived from EP, displaying merely 48.88% amino acid similarity to the yeast exo-1,3-beta glucanase (Exg1). Successfully overexpressing Exo15 in E. coli, we confirmed its functionality in line with EP. Exo15 exhibited exceptional catalytic prowess, efficiently hydrolyzing mogroside V into the high-potency sweetener SI, with unparalleled activity and specificity. Our groundbreaking approach yielded an impressive SI titer of 54 g/L, coupled with an average conversion rate of 2.5 g/L per hour. These outstanding outcomes underscore the immense potential of Exo15 in cost-effective industrial production of the premium natural sweetener, siamenoside I, paving the way for its widespread adoption.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-025-04260-2.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.