{"title":"Constructing Genetically Engineered Escherichia coli for De Novo Production of L-Threo-3-Hydroxyaspartic Acid.","authors":"Jing Guo, Jiayi Cui, Mingyue Xun, Wencheng Zhang, Mo Xian, Rubing Zhang","doi":"10.1007/s12010-025-05224-1","DOIUrl":null,"url":null,"abstract":"<p><p>L-threo-3-hydroxyaspartic acid (L-THA) is a non-proteinogenic amino acid that has garnered significant attention due to its diverse biological activities. However, the synthesis of L-THA through enzymatic and whole-cell catalysis requires the expensive substrate L-aspartic acid or L-asparagine, and co-substrate α-ketoglutarate, which limits their large-scale application. Here, this is the first report of engineering E. coli as a cell factory for de novo production of L-THA from glucose by fermentation. Firstly, the asnO gene encoding asparagine hydroxylases from Streptomyces coelicolor was heterologously expressed in E. coli to yield the L-THA producing strain. The formation and configuration of L-THA were characterized by LC-MS and HPLC after FDAA derivatization. Secondly, the pathway genes aspC and asnB, which encode aspartate aminotransferase and asparagine synthase, respectively, were overexpressed to enhance L-THA titer from 49.9 to 90.84 mg/L. Thirdly, the efforts were made to improve the key precursor L-aspartic acid pool by overexpressing the aspartase encoding gene aspA and knocking out aspartate kinase (AK) III encoding gene lysC. The best strain CC03 was obtained and L-THA titer reached 278.3 mg/L in a shake flask, representing an approximately 5.6-fold increase compared to the original strain. Ultimately, 2.87 g/L L-THA was obtained after 32 h fed-batch fermentation. This research underscores the potential use of E. coli fermentation as a feasible platform for de novo biosynthesis of L-THA from glucose, which is amenable to industrial application.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05224-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
L-threo-3-hydroxyaspartic acid (L-THA) is a non-proteinogenic amino acid that has garnered significant attention due to its diverse biological activities. However, the synthesis of L-THA through enzymatic and whole-cell catalysis requires the expensive substrate L-aspartic acid or L-asparagine, and co-substrate α-ketoglutarate, which limits their large-scale application. Here, this is the first report of engineering E. coli as a cell factory for de novo production of L-THA from glucose by fermentation. Firstly, the asnO gene encoding asparagine hydroxylases from Streptomyces coelicolor was heterologously expressed in E. coli to yield the L-THA producing strain. The formation and configuration of L-THA were characterized by LC-MS and HPLC after FDAA derivatization. Secondly, the pathway genes aspC and asnB, which encode aspartate aminotransferase and asparagine synthase, respectively, were overexpressed to enhance L-THA titer from 49.9 to 90.84 mg/L. Thirdly, the efforts were made to improve the key precursor L-aspartic acid pool by overexpressing the aspartase encoding gene aspA and knocking out aspartate kinase (AK) III encoding gene lysC. The best strain CC03 was obtained and L-THA titer reached 278.3 mg/L in a shake flask, representing an approximately 5.6-fold increase compared to the original strain. Ultimately, 2.87 g/L L-THA was obtained after 32 h fed-batch fermentation. This research underscores the potential use of E. coli fermentation as a feasible platform for de novo biosynthesis of L-THA from glucose, which is amenable to industrial application.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.