Characterizing the distribution of aromatic amines between polyester, cotton, and wool textiles and air.

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL
Özge Edebali, Anna Goellner, Marek Stiborek, Zdeněk Šimek, Melis Muz, Branislav Vrana, Lisa Melymuk
{"title":"Characterizing the distribution of aromatic amines between polyester, cotton, and wool textiles and air.","authors":"Özge Edebali, Anna Goellner, Marek Stiborek, Zdeněk Šimek, Melis Muz, Branislav Vrana, Lisa Melymuk","doi":"10.1039/d5em00015g","DOIUrl":null,"url":null,"abstract":"<p><p>Textiles play an important role in the accumulation of harmful chemicals and can serve as a secondary source of chemical pollutants in indoor environments, releasing these chemicals back into indoor air, as well as a vector from which indoor pollution can be released by laundering to wastewater systems. Among harmful indoor pollutants, aromatic amines (AAs) are particularly concerning due to their mutagenic and carcinogenic properties, but have received limited attention in non-occupational indoor environments. We have characterized the distribution of 19 AAs between cotton, wool, and polyester textiles and air. Chamber exposure experiments were conducted under controlled laboratory conditions to quantify textile-air distributions of AAs and identify key parameters impacting the distribution. The mass-normalized textile/air distribution coefficients (<i>K</i><sub>TA</sub>) of AAs for polyester, cotton, and wool range from 5.28 to 9.52 log units (L kg<sup>-1</sup>). The findings suggest that cotton generally exhibits higher distribution coefficients than polyester and wool for most analytes. Overall, the results show a strong positive relationship between octanol-air distribution coefficients (<i>K</i><sub>OA</sub>) and <i>K</i><sub>TA</sub> values. The consistent uptake capacity of all tested textiles for AAs highlights the potential for textiles to play a key role in AA indoor distributions.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d5em00015g","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Textiles play an important role in the accumulation of harmful chemicals and can serve as a secondary source of chemical pollutants in indoor environments, releasing these chemicals back into indoor air, as well as a vector from which indoor pollution can be released by laundering to wastewater systems. Among harmful indoor pollutants, aromatic amines (AAs) are particularly concerning due to their mutagenic and carcinogenic properties, but have received limited attention in non-occupational indoor environments. We have characterized the distribution of 19 AAs between cotton, wool, and polyester textiles and air. Chamber exposure experiments were conducted under controlled laboratory conditions to quantify textile-air distributions of AAs and identify key parameters impacting the distribution. The mass-normalized textile/air distribution coefficients (KTA) of AAs for polyester, cotton, and wool range from 5.28 to 9.52 log units (L kg-1). The findings suggest that cotton generally exhibits higher distribution coefficients than polyester and wool for most analytes. Overall, the results show a strong positive relationship between octanol-air distribution coefficients (KOA) and KTA values. The consistent uptake capacity of all tested textiles for AAs highlights the potential for textiles to play a key role in AA indoor distributions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信