Martina M Golden, Carter U Brzezinski, William M Wuest
{"title":"Target-Guided Design and Synthesis of Aryl-Functionalized Promysalin Analogs.","authors":"Martina M Golden, Carter U Brzezinski, William M Wuest","doi":"10.1002/cbic.202401030","DOIUrl":null,"url":null,"abstract":"<p><p>The development of new narrow-spectrum antibiotics is a promising approach to combat antibiotic resistance. Promysalin, a secondary metabolite isolated from Pseudomonas putida, exhibits potent species-specific inhibition of the pathogen P. aeruginosa (IC<sub>50</sub> 21 nM). Herein, the total synthesis and stereochemical assignment of promysalin, structure-activity relationship studies, and the identification of its molecular target, succinate dehydrogenase, are previously reported by the group. These findings enable computational studies of promysalin's interactions with succinate dehydrogenase, revealing a novel binding site region primed for π-π stacking interactions with a nearby tryptophan residue. It is hypothesized that new aromatic analogs of promysalin can target this beneficial interaction, potentially leading to more potent inhibitors of P. aeruginosa growth. Herein, the in silico design of these analogs, a scalable and general synthetic route to access them, and characterization of their activity against a panel of clinically relevant P. aeruginosa strains are reported.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e2401030"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202401030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of new narrow-spectrum antibiotics is a promising approach to combat antibiotic resistance. Promysalin, a secondary metabolite isolated from Pseudomonas putida, exhibits potent species-specific inhibition of the pathogen P. aeruginosa (IC50 21 nM). Herein, the total synthesis and stereochemical assignment of promysalin, structure-activity relationship studies, and the identification of its molecular target, succinate dehydrogenase, are previously reported by the group. These findings enable computational studies of promysalin's interactions with succinate dehydrogenase, revealing a novel binding site region primed for π-π stacking interactions with a nearby tryptophan residue. It is hypothesized that new aromatic analogs of promysalin can target this beneficial interaction, potentially leading to more potent inhibitors of P. aeruginosa growth. Herein, the in silico design of these analogs, a scalable and general synthetic route to access them, and characterization of their activity against a panel of clinically relevant P. aeruginosa strains are reported.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).