The Novel Dual GIP and GLP-1 Receptor Agonist Tirzepatide Attenuates Colon Cancer Development by Regulating Glucose Metabolism.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yikai Zhang, Yi Xie, Shenglong Xia, Xinnuo Ge, Jiaying Li, Fang Liu, Fan Jia, Shengyao Wang, Qiao Zhou, Menghan Gao, Weihuan Fang, Chao Zheng
{"title":"The Novel Dual GIP and GLP-1 Receptor Agonist Tirzepatide Attenuates Colon Cancer Development by Regulating Glucose Metabolism.","authors":"Yikai Zhang, Yi Xie, Shenglong Xia, Xinnuo Ge, Jiaying Li, Fang Liu, Fan Jia, Shengyao Wang, Qiao Zhou, Menghan Gao, Weihuan Fang, Chao Zheng","doi":"10.1002/advs.202411980","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a leading cause of cancer mortality while diabetes is a recognized risk factor for CRC. Here we report that tirzepatide (TZP), a novel polypeptide/glucagon-like peptide 1 receptor (GIPR/GLP-1R) agonist for the treatment of diabetes, has a role in attenuating CRC growth. TZP significantly inhibited colon cancer cell proliferation promoted apoptosis in vitro and induced durable tumor regression in vivo under hyperglycemic and nonhyperglycemic conditions across multiple murine cancer models. As glucose metabolism is known to critically regulate colon cancer progression, spatial metabolomics results revealed that glucose metabolites are robustly reduced in the colon cancer regions of the TZP-treated mice. TZP inhibited glucose uptake and destabilized hypoxia-inducible factor-1 alpha (HIF-1α) with reduced expression and activity of the rate-limiting enzymes 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) and phosphofructokinase 1 (PFK-1). These effects contributed to the downregulation of glycolysis and the tricarboxylic acid (TCA) cycle. TZP also delayed tumor development in a patient-derived xenograft (PDX) mouse model accompanied by HIF-1α mediated PFKFB3-PFK-1 inhibition. Therefore, the study provides strong evidence that glycolysis-blocking TZP, besides its application in treating type 2 diabetes, has the potential for preclinical studies as a therapy for colorectal cancer used either as monotherapy or in combination with other anticancer therapies.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411980"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411980","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) is a leading cause of cancer mortality while diabetes is a recognized risk factor for CRC. Here we report that tirzepatide (TZP), a novel polypeptide/glucagon-like peptide 1 receptor (GIPR/GLP-1R) agonist for the treatment of diabetes, has a role in attenuating CRC growth. TZP significantly inhibited colon cancer cell proliferation promoted apoptosis in vitro and induced durable tumor regression in vivo under hyperglycemic and nonhyperglycemic conditions across multiple murine cancer models. As glucose metabolism is known to critically regulate colon cancer progression, spatial metabolomics results revealed that glucose metabolites are robustly reduced in the colon cancer regions of the TZP-treated mice. TZP inhibited glucose uptake and destabilized hypoxia-inducible factor-1 alpha (HIF-1α) with reduced expression and activity of the rate-limiting enzymes 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) and phosphofructokinase 1 (PFK-1). These effects contributed to the downregulation of glycolysis and the tricarboxylic acid (TCA) cycle. TZP also delayed tumor development in a patient-derived xenograft (PDX) mouse model accompanied by HIF-1α mediated PFKFB3-PFK-1 inhibition. Therefore, the study provides strong evidence that glycolysis-blocking TZP, besides its application in treating type 2 diabetes, has the potential for preclinical studies as a therapy for colorectal cancer used either as monotherapy or in combination with other anticancer therapies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信