Solution-processable polymer membranes with hydrophilic subnanometre pores for sustainable lithium extraction

Dingchang Yang, Yijie Yang, Toby Wong, Sunshine Iguodala, Anqi Wang, Louie Lovell, Fabrizia Foglia, Peter Fouquet, Charlotte Breakwell, Zhiyu Fan, Yanlin Wang, Melanie M. Britton, Daryl R. Williams, Nilay Shah, Tongwen Xu, Neil B. McKeown, Maria-Magdalena Titirici, Kim E. Jelfs, Qilei Song
{"title":"Solution-processable polymer membranes with hydrophilic subnanometre pores for sustainable lithium extraction","authors":"Dingchang Yang, Yijie Yang, Toby Wong, Sunshine Iguodala, Anqi Wang, Louie Lovell, Fabrizia Foglia, Peter Fouquet, Charlotte Breakwell, Zhiyu Fan, Yanlin Wang, Melanie M. Britton, Daryl R. Williams, Nilay Shah, Tongwen Xu, Neil B. McKeown, Maria-Magdalena Titirici, Kim E. Jelfs, Qilei Song","doi":"10.1038/s44221-025-00398-8","DOIUrl":null,"url":null,"abstract":"Membrane-based separation processes hold great promise for sustainable extraction of lithium from brines for the rapidly expanding electric vehicle industry and renewable energy storage. However, it remains challenging to develop high-selectivity membranes that can be upscaled for industrial processes. Here we report solution-processable polymer membranes with subnanometre pores with excellent ion separation selectivity in electrodialysis processes for lithium extraction. Polymers of intrinsic microporosity incorporated with hydrophilic functional groups enable fast transport of monovalent alkali cations (Li+, Na+ and K+) while rejecting relatively larger divalent ions such as Mg2+. The polymer of intrinsic microporosity membranes surpasses the performance of most existing membrane materials. Furthermore, the membranes were scaled up and integrated into an electrodialysis stack, demonstrating excellent selectivity in simulated salt-lake brines. This work will inspire the development of selective membranes for a wide range of sustainable separation processes critical for resource recovery and a global circular economy. The microporous polymer membranes with the introduction of hydrophilic functional groups achieve high selectivity for monovalent/divalent ion separation in electrodialysis processes, providing an alternative approach to lithium extraction with easy scale-up.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 3","pages":"319-333"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-025-00398-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-025-00398-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane-based separation processes hold great promise for sustainable extraction of lithium from brines for the rapidly expanding electric vehicle industry and renewable energy storage. However, it remains challenging to develop high-selectivity membranes that can be upscaled for industrial processes. Here we report solution-processable polymer membranes with subnanometre pores with excellent ion separation selectivity in electrodialysis processes for lithium extraction. Polymers of intrinsic microporosity incorporated with hydrophilic functional groups enable fast transport of monovalent alkali cations (Li+, Na+ and K+) while rejecting relatively larger divalent ions such as Mg2+. The polymer of intrinsic microporosity membranes surpasses the performance of most existing membrane materials. Furthermore, the membranes were scaled up and integrated into an electrodialysis stack, demonstrating excellent selectivity in simulated salt-lake brines. This work will inspire the development of selective membranes for a wide range of sustainable separation processes critical for resource recovery and a global circular economy. The microporous polymer membranes with the introduction of hydrophilic functional groups achieve high selectivity for monovalent/divalent ion separation in electrodialysis processes, providing an alternative approach to lithium extraction with easy scale-up.

Abstract Image

具有亲水亚纳米孔的可溶液处理聚合物膜,可用于锂的可持续提取
基于膜的分离工艺为从盐水中可持续提取锂提供了巨大的希望,用于快速发展的电动汽车工业和可再生能源存储。然而,开发可用于工业生产的高选择性膜仍然具有挑战性。在这里,我们报道了具有亚纳米孔的溶液可加工聚合物膜,在电渗析过程中具有优异的离子分离选择性。含有亲水性官能团的聚合物具有固有的微孔隙,可以快速传输单价碱离子(Li+, Na+和K+),同时拒绝相对较大的二价离子(如Mg2+)。本征微孔膜聚合物的性能超过了大多数现有的膜材料。此外,将膜按比例放大并集成到电渗析堆栈中,在模拟盐湖盐水中显示出出色的选择性。这项工作将激发选择性膜的发展,用于广泛的可持续分离过程,对资源回收和全球循环经济至关重要。引入亲水官能团的微孔聚合物膜在电渗析过程中实现了单价/二价离子的高选择性分离,为锂提取提供了一种易于扩大规模的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信