Zhuan Chen, Jiayi Wang, Bo Yang, Jun Li, Zhiyan Liang, Xinyue Liu, Yan Bao, Jiazhen Cao, Mingyang Xing
{"title":"Organic carbon transfer process in advanced oxidation systems for water clean-up","authors":"Zhuan Chen, Jiayi Wang, Bo Yang, Jun Li, Zhiyan Liang, Xinyue Liu, Yan Bao, Jiazhen Cao, Mingyang Xing","doi":"10.1038/s44221-025-00399-7","DOIUrl":null,"url":null,"abstract":"Although Fenton and Fenton-like technologies have long been of great interest for application to environmental remediation, the transformation and final form of pollutants during the reaction have rarely been studied in depth. Here we report a pollutant transformation process, termed organic carbon transfer process (OCTP), in a Fenton-like reaction. Compared with the Fenton reaction previously reported for treating organic wastewater, the OCTP is very different and widely observed in reaction systems. In the OCTP, as oxidation proceeds and pollutant derivatives interact, the pollutants’ polarity changes and the pollutants predominantly accumulate on the catalyst surface. The OCTP occurs during the degradation of various wastewater types and accounts for up to 90.1% of the total substances accumulated on catalyst surfaces, even during industrial wastewater treatment. The in-depth study of OCTP has to some extent revealed the main reasons for the deactivation of heterogeneous catalysts during the reaction process and provided new research directions for the future study of heterogeneous catalytic systems. While advanced oxidation processes show promise in wastewater treatment, the fate of pollutants and intermediates is yet to be understood. The organic carbon transfer process operates in many oxidation systems, and the accumulation of reaction by-products in catalyst’s surface weakens the catalytic performance.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 3","pages":"334-344"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-025-00399-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Although Fenton and Fenton-like technologies have long been of great interest for application to environmental remediation, the transformation and final form of pollutants during the reaction have rarely been studied in depth. Here we report a pollutant transformation process, termed organic carbon transfer process (OCTP), in a Fenton-like reaction. Compared with the Fenton reaction previously reported for treating organic wastewater, the OCTP is very different and widely observed in reaction systems. In the OCTP, as oxidation proceeds and pollutant derivatives interact, the pollutants’ polarity changes and the pollutants predominantly accumulate on the catalyst surface. The OCTP occurs during the degradation of various wastewater types and accounts for up to 90.1% of the total substances accumulated on catalyst surfaces, even during industrial wastewater treatment. The in-depth study of OCTP has to some extent revealed the main reasons for the deactivation of heterogeneous catalysts during the reaction process and provided new research directions for the future study of heterogeneous catalytic systems. While advanced oxidation processes show promise in wastewater treatment, the fate of pollutants and intermediates is yet to be understood. The organic carbon transfer process operates in many oxidation systems, and the accumulation of reaction by-products in catalyst’s surface weakens the catalytic performance.