Organic carbon transfer process in advanced oxidation systems for water clean-up

Zhuan Chen, Jiayi Wang, Bo Yang, Jun Li, Zhiyan Liang, Xinyue Liu, Yan Bao, Jiazhen Cao, Mingyang Xing
{"title":"Organic carbon transfer process in advanced oxidation systems for water clean-up","authors":"Zhuan Chen, Jiayi Wang, Bo Yang, Jun Li, Zhiyan Liang, Xinyue Liu, Yan Bao, Jiazhen Cao, Mingyang Xing","doi":"10.1038/s44221-025-00399-7","DOIUrl":null,"url":null,"abstract":"Although Fenton and Fenton-like technologies have long been of great interest for application to environmental remediation, the transformation and final form of pollutants during the reaction have rarely been studied in depth. Here we report a pollutant transformation process, termed organic carbon transfer process (OCTP), in a Fenton-like reaction. Compared with the Fenton reaction previously reported for treating organic wastewater, the OCTP is very different and widely observed in reaction systems. In the OCTP, as oxidation proceeds and pollutant derivatives interact, the pollutants’ polarity changes and the pollutants predominantly accumulate on the catalyst surface. The OCTP occurs during the degradation of various wastewater types and accounts for up to 90.1% of the total substances accumulated on catalyst surfaces, even during industrial wastewater treatment. The in-depth study of OCTP has to some extent revealed the main reasons for the deactivation of heterogeneous catalysts during the reaction process and provided new research directions for the future study of heterogeneous catalytic systems. While advanced oxidation processes show promise in wastewater treatment, the fate of pollutants and intermediates is yet to be understood. The organic carbon transfer process operates in many oxidation systems, and the accumulation of reaction by-products in catalyst’s surface weakens the catalytic performance.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 3","pages":"334-344"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-025-00399-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although Fenton and Fenton-like technologies have long been of great interest for application to environmental remediation, the transformation and final form of pollutants during the reaction have rarely been studied in depth. Here we report a pollutant transformation process, termed organic carbon transfer process (OCTP), in a Fenton-like reaction. Compared with the Fenton reaction previously reported for treating organic wastewater, the OCTP is very different and widely observed in reaction systems. In the OCTP, as oxidation proceeds and pollutant derivatives interact, the pollutants’ polarity changes and the pollutants predominantly accumulate on the catalyst surface. The OCTP occurs during the degradation of various wastewater types and accounts for up to 90.1% of the total substances accumulated on catalyst surfaces, even during industrial wastewater treatment. The in-depth study of OCTP has to some extent revealed the main reasons for the deactivation of heterogeneous catalysts during the reaction process and provided new research directions for the future study of heterogeneous catalytic systems. While advanced oxidation processes show promise in wastewater treatment, the fate of pollutants and intermediates is yet to be understood. The organic carbon transfer process operates in many oxidation systems, and the accumulation of reaction by-products in catalyst’s surface weakens the catalytic performance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信