HyeJeong Kim, Fan-Chi Lin, James C. Pechmann, Christian L. Hardwick, Adam P. McKean
{"title":"Seismic Imaging of the Salt Lake Basin Using Joint Inversion of Receiver Functions and Rayleigh Wave Data","authors":"HyeJeong Kim, Fan-Chi Lin, James C. Pechmann, Christian L. Hardwick, Adam P. McKean","doi":"10.1029/2024JB030927","DOIUrl":null,"url":null,"abstract":"<p>This study presents a new velocity model for the Salt Lake basin (SLB) in Utah, determined using data from permanent and temporary seismic stations located on top of the basin in the Salt Lake Valley (SLV) and nearby. A three-dimensional (3D) velocity model for the SLB is needed for accurate predictions of future damaging earthquake ground shaking in the heavily urbanized SLV, including Salt Lake City. The SLB part of the Wasatch Front community velocity model (WFCVM) currently serves this purpose. However, the current WFCVM is based primarily on gravity and borehole data with relatively few seismic constraints below depths of 100 m. In this study we use the first peak of SLV receiver functions (RFs), which is sensitive to a strong impedance contrast at the base of a semi-consolidated sediment layer. We jointly invert the RF waveform with Rayleigh wave ellipticity (H/V) and phase velocity measurements using the Markov chain Monte Carlo approach. Our new velocity model shows a greater combined thickness of unconsolidated and semi-consolidated sediments, compared to the WFCVM, in the northeastern SLB between the west-dipping East Bench fault section of the Wasatch fault and the antithetic West Valley fault zone to the west. We show that the new seismic velocity model explains the gravity patterns in the valley. The new velocity model from this study provides a basis for revising the SLB model in the WFCVM.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030927","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030927","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a new velocity model for the Salt Lake basin (SLB) in Utah, determined using data from permanent and temporary seismic stations located on top of the basin in the Salt Lake Valley (SLV) and nearby. A three-dimensional (3D) velocity model for the SLB is needed for accurate predictions of future damaging earthquake ground shaking in the heavily urbanized SLV, including Salt Lake City. The SLB part of the Wasatch Front community velocity model (WFCVM) currently serves this purpose. However, the current WFCVM is based primarily on gravity and borehole data with relatively few seismic constraints below depths of 100 m. In this study we use the first peak of SLV receiver functions (RFs), which is sensitive to a strong impedance contrast at the base of a semi-consolidated sediment layer. We jointly invert the RF waveform with Rayleigh wave ellipticity (H/V) and phase velocity measurements using the Markov chain Monte Carlo approach. Our new velocity model shows a greater combined thickness of unconsolidated and semi-consolidated sediments, compared to the WFCVM, in the northeastern SLB between the west-dipping East Bench fault section of the Wasatch fault and the antithetic West Valley fault zone to the west. We show that the new seismic velocity model explains the gravity patterns in the valley. The new velocity model from this study provides a basis for revising the SLB model in the WFCVM.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.