Progress and Perspective of Noble-Metal-Free Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Ning Duan, Jiawen Wang, Ruizhe Wang, Guosheng Han, Xianli Wu, Yanyan Liu, Baojun Li
{"title":"Progress and Perspective of Noble-Metal-Free Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries","authors":"Ning Duan,&nbsp;Jiawen Wang,&nbsp;Ruizhe Wang,&nbsp;Guosheng Han,&nbsp;Xianli Wu,&nbsp;Yanyan Liu,&nbsp;Baojun Li","doi":"10.1002/adsu.202400881","DOIUrl":null,"url":null,"abstract":"<p>Rechargeable Zn-air batteries (ZABs) have attracted widespread attention due to their advantages, such as high energy density, low price, and environmental friendliness. However, the sluggish kinetics of ORR/OER greatly prevent the practical application of rechargeable ZABs. In recent years, efficient, durable, and cost-effective bifunctional catalysts are developed to accelerate the kinetics of ORR/OER and enhance the performance of ZABs. This review provides a systematic overview of ZABs and describes the standards of bifunctional oxygen electrocatalysts. The latest research progress in the development of non-noble metal-based and nano-metallic electrocatalysts for the air electrode of ZABs is systematically summarized, including the classification, design, synthesis methods, active site structures, and mechanism. Finally, the challenges faced by bifunctional catalysts and probable solutions are proposed. This review will provide a comprehensive guidance for development of efficient oxygen electrocatalyst in the future.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 3","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400881","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable Zn-air batteries (ZABs) have attracted widespread attention due to their advantages, such as high energy density, low price, and environmental friendliness. However, the sluggish kinetics of ORR/OER greatly prevent the practical application of rechargeable ZABs. In recent years, efficient, durable, and cost-effective bifunctional catalysts are developed to accelerate the kinetics of ORR/OER and enhance the performance of ZABs. This review provides a systematic overview of ZABs and describes the standards of bifunctional oxygen electrocatalysts. The latest research progress in the development of non-noble metal-based and nano-metallic electrocatalysts for the air electrode of ZABs is systematically summarized, including the classification, design, synthesis methods, active site structures, and mechanism. Finally, the challenges faced by bifunctional catalysts and probable solutions are proposed. This review will provide a comprehensive guidance for development of efficient oxygen electrocatalyst in the future.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信