Self-Assembly of Amphiphilic Polyphenylene Dendrimers with Different Surface Functionalization in Solvent/Non-Solvent Mixtures

IF 2.5 4区 化学 Q3 POLYMER SCIENCE
Svenja Weigold, Kerstin Brödner, Torsten John, Jan Freudenberg, Uwe H. F. Bunz, Tanja Weil, George Fytas, Klaus Müllen
{"title":"Self-Assembly of Amphiphilic Polyphenylene Dendrimers with Different Surface Functionalization in Solvent/Non-Solvent Mixtures","authors":"Svenja Weigold,&nbsp;Kerstin Brödner,&nbsp;Torsten John,&nbsp;Jan Freudenberg,&nbsp;Uwe H. F. Bunz,&nbsp;Tanja Weil,&nbsp;George Fytas,&nbsp;Klaus Müllen","doi":"10.1002/macp.202400431","DOIUrl":null,"url":null,"abstract":"<p>This work compares the self-assembly of nanometer-sized amphiphilic Janus-type and patched polyphenylene dendrimers (PPDs) in solvent/non-solvent mixtures utilizing static and dynamic light-scattering measurements. First- and second-generation (G1 and G2) dendrimers are functionalized with substituents of different polarity, i.e., polar <i>neo</i>-pentyl sulfonate or sulfonic acid groups are combined with non-polar propyl groups. <i>Neo-</i>pentyl sulfonate PPDs give rise to defined supramolecular assembly structures, irrespective of their amphiphilic surface functionalization or size. In contrast, the self-assembly of PPDs with sulfonic acid substitution exhibits a pronounced dependence upon substitution pattern and generation. In particular, the Janus dendrimers demonstrate an increased tendency toward self-assembly compared to their patched counterparts. This trend is more pronounced for G2 than for G1 PPDs.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202400431","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400431","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This work compares the self-assembly of nanometer-sized amphiphilic Janus-type and patched polyphenylene dendrimers (PPDs) in solvent/non-solvent mixtures utilizing static and dynamic light-scattering measurements. First- and second-generation (G1 and G2) dendrimers are functionalized with substituents of different polarity, i.e., polar neo-pentyl sulfonate or sulfonic acid groups are combined with non-polar propyl groups. Neo-pentyl sulfonate PPDs give rise to defined supramolecular assembly structures, irrespective of their amphiphilic surface functionalization or size. In contrast, the self-assembly of PPDs with sulfonic acid substitution exhibits a pronounced dependence upon substitution pattern and generation. In particular, the Janus dendrimers demonstrate an increased tendency toward self-assembly compared to their patched counterparts. This trend is more pronounced for G2 than for G1 PPDs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Chemistry and Physics
Macromolecular Chemistry and Physics 化学-高分子科学
CiteScore
4.30
自引率
4.00%
发文量
278
审稿时长
1.4 months
期刊介绍: Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信