Avshalom Babad, Olaf Bubenzer, Stefan Hecht, Elli Groner
{"title":"How Perennials Survive the Droughts—Pulse–Reserve Dynamics in a Hyperarid Basin","authors":"Avshalom Babad, Olaf Bubenzer, Stefan Hecht, Elli Groner","doi":"10.1002/eco.2751","DOIUrl":null,"url":null,"abstract":"<p>The hyperarid environment poses significant challenges to local vegetation. The main limiting factors are water scarcity and inconsistent precipitation regimes. Nevertheless, perennials flourish in hyperarid stream channels, predominantly acacia trees, which require significant amounts of water. This study seeks to reveal the mechanism that provides acacias with adequate water. Although the pulse–reserve model can explain how desert flora survives, hyperarid environments are much more complicated. Accordingly, direct rainfall is insufficient to sustain local perennials, which rely on runoff for their water source. The hyperarid Gvanim basin in southern Israel is a small watershed that supports many perennials, including a thriving population of acacia trees. High-resolution hydrological monitoring, including rain, evaporation, soil water content and flash flood discharge, along with surveys of lithology and acacia populations, allowed us to calculate the water balance for the basin and quantify the components of the pulse-reserve system. The results indicate that unique geological settings can retain runoff water from a single significant flash flood that is sufficient to sustain perennials even during drought years. We propose a modified pulse–reserve mechanism that provides water to large acacia trees during the hot dry summer in hyperarid areas.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"18 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2751","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2751","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The hyperarid environment poses significant challenges to local vegetation. The main limiting factors are water scarcity and inconsistent precipitation regimes. Nevertheless, perennials flourish in hyperarid stream channels, predominantly acacia trees, which require significant amounts of water. This study seeks to reveal the mechanism that provides acacias with adequate water. Although the pulse–reserve model can explain how desert flora survives, hyperarid environments are much more complicated. Accordingly, direct rainfall is insufficient to sustain local perennials, which rely on runoff for their water source. The hyperarid Gvanim basin in southern Israel is a small watershed that supports many perennials, including a thriving population of acacia trees. High-resolution hydrological monitoring, including rain, evaporation, soil water content and flash flood discharge, along with surveys of lithology and acacia populations, allowed us to calculate the water balance for the basin and quantify the components of the pulse-reserve system. The results indicate that unique geological settings can retain runoff water from a single significant flash flood that is sufficient to sustain perennials even during drought years. We propose a modified pulse–reserve mechanism that provides water to large acacia trees during the hot dry summer in hyperarid areas.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.