Elucidating the Role of Addenda and Hydrogen Atoms on the Acidity of Heteropolyacid to Produce Butyl Levulinate as a Green Diesel Additive

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Khwaja Alamgir Ahmad, Hussein Znad, Ejaz Ahmad
{"title":"Elucidating the Role of Addenda and Hydrogen Atoms on the Acidity of Heteropolyacid to Produce Butyl Levulinate as a Green Diesel Additive","authors":"Khwaja Alamgir Ahmad,&nbsp;Hussein Znad,&nbsp;Ejaz Ahmad","doi":"10.1002/adsu.202400535","DOIUrl":null,"url":null,"abstract":"<p>The present study explores the synthesis of butyl levulinate (BL), a green diesel additive, using vanadium-incorporated Keggin phosphomolybdic acid (HPVM) catalysts. This study highlights the effect of addenda and hydrogen atoms on HPVM catalysts for BL production, thereby elucidating a correlation between addenda atoms, HPVM acidity, and BL yield. The catalysts are characterized using Raman spectroscopy, FTIR, XRD, ammonia-TPD, SEM-EDX, and ICP-OES techniques to determine their structural properties, acidity, and elemental composition. Reaction parameters, including time, temperature, catalyst concentration, stirring rate, and solvent volume, are systematically evaluated to optimize the conversion of levulinic acid (LA) to BL. A significant BL yield (&gt;96%) is obtained using 25 wt.% H<sub>4</sub>PMo<sub>11</sub>VO<sub>40</sub> (H<sub>4</sub>PVM) catalyst at 100 °C in 40 min. Kinetic analysis unveiled a pseudo-first-order reaction mechanism for BL synthesis with activation energies of 66.73, 68.81, and 71.19 kJ.mol<sup>−1</sup> for H<sub>4</sub>PMo<sub>11</sub>VO<sub>40</sub> (H<sub>4</sub>PVM), H<sub>5</sub>PMo<sub>10</sub>V<sub>2</sub>O<sub>40</sub> (H<sub>5</sub>PVM), and H<sub>6</sub>PMo<sub>9</sub>V<sub>3</sub>O<sub>40</sub> (H<sub>6</sub>PVM) catalysts, respectively. Additionally, thermodynamic parameters, such as enthalpy of activation (ΔH*), entropy of activation (ΔS*), and Gibbs free energy of activation (ΔG*), are determined. Overall, this study highlights the complex interplay between acidity, activation energy, and BL yield, emphasizing the significance of the number of vanadium addenda atoms in catalyst performance.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 3","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400535","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study explores the synthesis of butyl levulinate (BL), a green diesel additive, using vanadium-incorporated Keggin phosphomolybdic acid (HPVM) catalysts. This study highlights the effect of addenda and hydrogen atoms on HPVM catalysts for BL production, thereby elucidating a correlation between addenda atoms, HPVM acidity, and BL yield. The catalysts are characterized using Raman spectroscopy, FTIR, XRD, ammonia-TPD, SEM-EDX, and ICP-OES techniques to determine their structural properties, acidity, and elemental composition. Reaction parameters, including time, temperature, catalyst concentration, stirring rate, and solvent volume, are systematically evaluated to optimize the conversion of levulinic acid (LA) to BL. A significant BL yield (>96%) is obtained using 25 wt.% H4PMo11VO40 (H4PVM) catalyst at 100 °C in 40 min. Kinetic analysis unveiled a pseudo-first-order reaction mechanism for BL synthesis with activation energies of 66.73, 68.81, and 71.19 kJ.mol−1 for H4PMo11VO40 (H4PVM), H5PMo10V2O40 (H5PVM), and H6PMo9V3O40 (H6PVM) catalysts, respectively. Additionally, thermodynamic parameters, such as enthalpy of activation (ΔH*), entropy of activation (ΔS*), and Gibbs free energy of activation (ΔG*), are determined. Overall, this study highlights the complex interplay between acidity, activation energy, and BL yield, emphasizing the significance of the number of vanadium addenda atoms in catalyst performance.

本研究探讨了使用掺入钒的凯金磷钼酸(HPVM)催化剂合成绿色柴油添加剂乙酰丙酸丁酯(BL)的过程。本研究强调了添加剂和氢原子对 HPVM 催化剂生产 BL 的影响,从而阐明了添加剂原子、HPVM 酸度和 BL 产量之间的相关性。研究使用拉曼光谱、傅立叶变换红外光谱、XRD、氨-TPD、SEM-EDX 和 ICP-OES 技术对催化剂进行了表征,以确定其结构特性、酸度和元素组成。系统地评估了反应参数,包括时间、温度、催化剂浓度、搅拌速率和溶剂体积,以优化左旋乙酰丙酸(LA)向 BL 的转化。使用 25 wt.% H4PMo11VO40 (H4PVM) 催化剂,在 100 °C、40 分钟内获得了可观的 BL 产率(96%)。动力学分析表明,H4PMo11VO40 (H4PVM)、H5PMo10V2O40 (H5PVM) 和 H6PMo9V3O40 (H6PVM) 催化剂合成 BL 的活化能分别为 66.73、68.81 和 71.19 kJ.mol-1 ,属于伪一阶反应机理。此外,还测定了活化焓(ΔH*)、活化熵(ΔS*)和活化吉布斯自由能(ΔG*)等热力学参数。总之,这项研究突出了酸度、活化能和 BL 产率之间复杂的相互作用,强调了钒附加原子数在催化剂性能中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信