Basal Stresses and Seismic Signals Generated by Laboratory Granular Flows: The Role of Basal Particle Agitation in Flow Mobility

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Tianhua Li, Yufeng Wang, Qiangong Cheng, Qiwen Lin, Jie Ming, Kun Li, Anwen Shi, Lieyuan Gou, Xin Wei
{"title":"Basal Stresses and Seismic Signals Generated by Laboratory Granular Flows: The Role of Basal Particle Agitation in Flow Mobility","authors":"Tianhua Li,&nbsp;Yufeng Wang,&nbsp;Qiangong Cheng,&nbsp;Qiwen Lin,&nbsp;Jie Ming,&nbsp;Kun Li,&nbsp;Anwen Shi,&nbsp;Lieyuan Gou,&nbsp;Xin Wei","doi":"10.1029/2024JF008015","DOIUrl":null,"url":null,"abstract":"<p>The basal stresses generated by rock avalanches, along with the resulting seismic signals, act as important indicators that provide insights into rock avalanche dynamics. Here, an experimental study on the propagation behavior and dynamics of granular flows moving on a 3D-printed bumpy substrate was conducted and the basal stress and seismic signature responses were analyzed. The results indicate that an agitating basal layer emerges in the nearly steady propagation state of the granular flows with increasing particle size, characterized by the base-normal velocity and internal shear behavior. Accompanying the strengthening of basal particle agitation, significant increases in basal stress fluctuations and seismic spikes are observed, and power law functions of the particle size are derived. Correspondingly, an increase in flow mobility is observed along with a transition of the flow regime toward the more collisional regime. Power laws linking the basal stress and seismic signatures with the frictional coefficients of the flows are derived to quantify the effect of basal particle agitation on flow mobility. Our results provide an experimental basis for the hypothesis that basal particle agitation could explain the long runout of rock avalanches.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF008015","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The basal stresses generated by rock avalanches, along with the resulting seismic signals, act as important indicators that provide insights into rock avalanche dynamics. Here, an experimental study on the propagation behavior and dynamics of granular flows moving on a 3D-printed bumpy substrate was conducted and the basal stress and seismic signature responses were analyzed. The results indicate that an agitating basal layer emerges in the nearly steady propagation state of the granular flows with increasing particle size, characterized by the base-normal velocity and internal shear behavior. Accompanying the strengthening of basal particle agitation, significant increases in basal stress fluctuations and seismic spikes are observed, and power law functions of the particle size are derived. Correspondingly, an increase in flow mobility is observed along with a transition of the flow regime toward the more collisional regime. Power laws linking the basal stress and seismic signatures with the frictional coefficients of the flows are derived to quantify the effect of basal particle agitation on flow mobility. Our results provide an experimental basis for the hypothesis that basal particle agitation could explain the long runout of rock avalanches.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信