Basal Stresses and Seismic Signals Generated by Laboratory Granular Flows: The Role of Basal Particle Agitation in Flow Mobility

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Tianhua Li, Yufeng Wang, Qiangong Cheng, Qiwen Lin, Jie Ming, Kun Li, Anwen Shi, Lieyuan Gou, Xin Wei
{"title":"Basal Stresses and Seismic Signals Generated by Laboratory Granular Flows: The Role of Basal Particle Agitation in Flow Mobility","authors":"Tianhua Li,&nbsp;Yufeng Wang,&nbsp;Qiangong Cheng,&nbsp;Qiwen Lin,&nbsp;Jie Ming,&nbsp;Kun Li,&nbsp;Anwen Shi,&nbsp;Lieyuan Gou,&nbsp;Xin Wei","doi":"10.1029/2024JF008015","DOIUrl":null,"url":null,"abstract":"<p>The basal stresses generated by rock avalanches, along with the resulting seismic signals, act as important indicators that provide insights into rock avalanche dynamics. Here, an experimental study on the propagation behavior and dynamics of granular flows moving on a 3D-printed bumpy substrate was conducted and the basal stress and seismic signature responses were analyzed. The results indicate that an agitating basal layer emerges in the nearly steady propagation state of the granular flows with increasing particle size, characterized by the base-normal velocity and internal shear behavior. Accompanying the strengthening of basal particle agitation, significant increases in basal stress fluctuations and seismic spikes are observed, and power law functions of the particle size are derived. Correspondingly, an increase in flow mobility is observed along with a transition of the flow regime toward the more collisional regime. Power laws linking the basal stress and seismic signatures with the frictional coefficients of the flows are derived to quantify the effect of basal particle agitation on flow mobility. Our results provide an experimental basis for the hypothesis that basal particle agitation could explain the long runout of rock avalanches.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF008015","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The basal stresses generated by rock avalanches, along with the resulting seismic signals, act as important indicators that provide insights into rock avalanche dynamics. Here, an experimental study on the propagation behavior and dynamics of granular flows moving on a 3D-printed bumpy substrate was conducted and the basal stress and seismic signature responses were analyzed. The results indicate that an agitating basal layer emerges in the nearly steady propagation state of the granular flows with increasing particle size, characterized by the base-normal velocity and internal shear behavior. Accompanying the strengthening of basal particle agitation, significant increases in basal stress fluctuations and seismic spikes are observed, and power law functions of the particle size are derived. Correspondingly, an increase in flow mobility is observed along with a transition of the flow regime toward the more collisional regime. Power laws linking the basal stress and seismic signatures with the frictional coefficients of the flows are derived to quantify the effect of basal particle agitation on flow mobility. Our results provide an experimental basis for the hypothesis that basal particle agitation could explain the long runout of rock avalanches.

实验室颗粒流产生的基底应力和地震信号:基底颗粒搅拌在流动流动性中的作用
岩石雪崩产生的基底应力,以及由此产生的地震信号,是了解岩石雪崩动力学的重要指标。本文对颗粒流在3d打印凹凸不平基板上的传播行为和动力学进行了实验研究,并对其基底应力和地震特征响应进行了分析。结果表明:随着颗粒尺寸的增大,颗粒流在接近稳定的传播状态下出现了一个搅拌基底层,表现为基法向速度和内剪切行为;随着基岩颗粒搅拌的增强,基岩应力波动和地震峰值显著增加,并推导了颗粒大小的幂律函数。相应地,随着流型向更强碰撞型转变,可以观察到流动流动性的增加。导出了将基底应力和地震特征与流动摩擦系数联系起来的幂律,以量化基底颗粒搅拌对流动迁移率的影响。我们的研究结果为基础颗粒的搅拌可以解释岩石雪崩的长跳动的假设提供了实验基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信