Evaluating Serpentinization as a Source of Phosphite to Microbial Communities in Hydrothermal Vents

IF 2.7 2区 地球科学 Q2 BIOLOGY
Geobiology Pub Date : 2025-03-25 DOI:10.1111/gbi.70016
Joanne S. Boden, Sanjoy M. Som, William J. Brazelton, Rika E. Anderson, Eva E. Stüeken
{"title":"Evaluating Serpentinization as a Source of Phosphite to Microbial Communities in Hydrothermal Vents","authors":"Joanne S. Boden,&nbsp;Sanjoy M. Som,&nbsp;William J. Brazelton,&nbsp;Rika E. Anderson,&nbsp;Eva E. Stüeken","doi":"10.1111/gbi.70016","DOIUrl":null,"url":null,"abstract":"<p>Previous studies have documented the presence of phosphite, a reduced and highly soluble form of phosphorus, in serpentinites, which has led to the hypothesis that serpentinizing hydrothermal vents could have been an important source of bioavailable phosphorus for early microbial communities in the Archean. Here, we test this hypothesis by evaluating the genomic hallmarks of phosphorus usage in microbial communities living in modern hydrothermal vents with and without influence from serpentinization. These genomic analyses are combined with results from a geochemical model that calculates phosphorus speciation during serpentinization as a function of temperature, water:rock ratio, and lithology at thermodynamic equilibrium. We find little to no genomic evidence of phosphite use in serpentinizing environments at the Voltri Massif or the Von Damm hydrothermal field at the Mid Cayman Rise, but relatively more in the Lost City hydrothermal field, Coast Range Ophiolite Microbial Observatory, The Cedars, and chimney samples from Old City hydrothermal field and Prony Bay hydrothermal field, as well as in the non-serpentinizing hydrothermal vents at Axial Seamount. Geochemical modeling shows that phosphite production is favored at ca 275°C–325°C and low water:rock ratios, which may explain previous observations of phosphite in serpentinite rocks; however, most of the initial phosphate is trapped in apatite during serpentinization, suppressing the absolute phosphite yield. As a result, phosphite from serpentinizing vents could have supported microbial growth around olivine minerals in chimney walls and suspended aggregates, but it is unlikely to have fueled substantial primary productivity in diffusely venting fluids during life's origin and evolution in the Archean unless substrates equivalent to dunites (composed of &gt; 90 wt% olivine) were more common.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.70016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.70016","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies have documented the presence of phosphite, a reduced and highly soluble form of phosphorus, in serpentinites, which has led to the hypothesis that serpentinizing hydrothermal vents could have been an important source of bioavailable phosphorus for early microbial communities in the Archean. Here, we test this hypothesis by evaluating the genomic hallmarks of phosphorus usage in microbial communities living in modern hydrothermal vents with and without influence from serpentinization. These genomic analyses are combined with results from a geochemical model that calculates phosphorus speciation during serpentinization as a function of temperature, water:rock ratio, and lithology at thermodynamic equilibrium. We find little to no genomic evidence of phosphite use in serpentinizing environments at the Voltri Massif or the Von Damm hydrothermal field at the Mid Cayman Rise, but relatively more in the Lost City hydrothermal field, Coast Range Ophiolite Microbial Observatory, The Cedars, and chimney samples from Old City hydrothermal field and Prony Bay hydrothermal field, as well as in the non-serpentinizing hydrothermal vents at Axial Seamount. Geochemical modeling shows that phosphite production is favored at ca 275°C–325°C and low water:rock ratios, which may explain previous observations of phosphite in serpentinite rocks; however, most of the initial phosphate is trapped in apatite during serpentinization, suppressing the absolute phosphite yield. As a result, phosphite from serpentinizing vents could have supported microbial growth around olivine minerals in chimney walls and suspended aggregates, but it is unlikely to have fueled substantial primary productivity in diffusely venting fluids during life's origin and evolution in the Archean unless substrates equivalent to dunites (composed of > 90 wt% olivine) were more common.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geobiology
Geobiology 生物-地球科学综合
CiteScore
6.80
自引率
5.40%
发文量
56
审稿时长
3 months
期刊介绍: The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time. Geobiology invites submission of high-quality articles in the following areas: Origins and evolution of life Co-evolution of the atmosphere, hydrosphere and biosphere The sedimentary rock record and geobiology of critical intervals Paleobiology and evolutionary ecology Biogeochemistry and global elemental cycles Microbe-mineral interactions Biomarkers Molecular ecology and phylogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信